Environmental Monitoring and Assessment

, Volume 184, Issue 8, pp 4685–4708 | Cite as

Ecological assessment of French Atlantic lakes based on phytoplankton, phytobenthos and macrophytes

  • Maria Cellamare
  • Soizic Morin
  • Michel Coste
  • Jacques Haury


Biological elements, including phytoplankton, phytobenthos, macrophytes, benthic invertebrates and fish, are employed by the EU Water Framework Directive (WFD) 2000/60/EC as ecological indicators for the assessment of surface waters. The use of primary producers (phytoplankton, phytobenthos and macrophytes) for water quality assessment has a long history, and several methods have been developed worldwide. In this study, we used these three communities to assess the ecological status of five natural lakes located in the Aquitaine region (southwest France). Several biological indices used in lakes from other European countries or in French rivers were employed and compared among the three communities. Each primary producer provided complementary information about the ecological status of the lakes, including the invasiveness of exotic taxa. Regardless of the producer community used, the response to the environment, as reflected by the indices (adequate for each community), was similar: Lakes Cazaux, Lacanau and Hourtin showed the best ecological status and Parentis and Soustons the worst. Phytoplankton diagnosis reflected and integrated unambiguously the water quality of the lakes, as demonstrated by the strong relationships between the phytoplankton index and the trophic status criteria. This community appeared as the best indicator, especially when macrophytes were absent. The methods applied here represent a potential tool for the assessment of the ecological status in the context of WFD, but they need to be refined. We propose modifications for phytobenthos index initially tailored for running waters for adequate use in lentic ecosystems. Indices for the three primary producers should be modified to incorporate exotic species which may provide information on potential biodiversity losses.


Phytoplankton Phytobenthos Macrophytes Ecological status French lakes Water Framework Directive 



We are grateful to C. Laplace-Treyture, A. Dutartre, V. Bertrin, F. Bonnin, C. Madigou, M. Torre, J. Grange, J. Huppert and S. Moreira for technical support (water sampling, diatom preparation, macrophyte surveys). C. Laplace-Treyture and E. Lambert are acknowledged for characean identifications. Thanks to M. Bonnet, M. Boudigues, B. Delest and B. Méchin for chemical analyses. We are grateful to P. de Tezanos Pinto for the helpful comments on the manuscript. We wish to thank an anonymous reviewer whose valuable comments substantially improved the manuscript. The present study was partially supported by the Regional Council of Aquitaine.

Supplementary material

10661_2011_2295_MOESM1_ESM.doc (28 kb)
ESM 1 (DOC 28 kb)


  1. Ács, É., Reskóné, N. M., Szabó, K., Taba, G., & Kiss, K. T. (2005). Application of epiphytic diatoms in water quality monitoring of Lake Velence—recommendations and assignments. Acta Botanica Hungarica, 47, 211–223.CrossRefGoogle Scholar
  2. Becker, V., Huszar, V., & Crossetti, L. (2009). Responses of phytoplankton functional groups to the mixing regime in a deep subtropical reservoir. Hydrobiologia, 628, 137–151.CrossRefGoogle Scholar
  3. Blanco, S., Ector, L., & Bécares, E. (2004). Epiphytic diatoms as water quality indicators in Spanish shallow lakes. Vie et Milieu (Life and Environment), 54, 71–79.Google Scholar
  4. Blindow, I. (1992). Long- and short-term dynamics of submerged macrophytes in two shallow eutrophic lakes. Freshwater Biology, 28, 15–27.CrossRefGoogle Scholar
  5. Bourrelly, P. (1966). Les algues vertes. Paris: Boubée.Google Scholar
  6. Bourrelly, P. (1968). Tome II: Les algues jaunes et brunes. Chrysophycées, Phéophycées, Xanthophycées et Diatomées. Paris: Boubée.Google Scholar
  7. Bourrelly, P. (1970). Tome III: Les algues bleues et rouges. Les Eugléniens, Péridiniens et Cryptomonadines. Paris: Boubée.Google Scholar
  8. Brabec, K., & Szoszkiewicz, K. (2006). Macrophytes and diatoms—major results and conclusions from the STAR project. Hydrobiologia, 566, 175–178.CrossRefGoogle Scholar
  9. Bukhtiyarova, L. N. (2006). Additional data on the diatom genus Karayevia and a proposal to reject the genus Kolbesia. Nova Hedwigia Beiheft, 130, 85–96.Google Scholar
  10. Capdevielle, P. (1978). Recherches écologiques et systématiques sur le phytoplancton du Lac de Cazaux-Sanguinet-Biscarosse. Thèse de Doctorat, Université de Bordeaux 1.Google Scholar
  11. Carvalho, L., Solimini, A., Phillips, G., van den Berg, M., Pietiläinen, O. P., Lyche Solheim, A., et al. (2008). Chlorophyll reference conditions for European lake types used for intercalibration of ecological status. Aquatic Ecology, 42, 203–211.CrossRefGoogle Scholar
  12. Carvalho, L., Solimini, A. G., Phillips, G., Pietiläinen, O.-P., Moe, J., Cardoso, A. C., et al. (2009). Site-specific chlorophyll reference conditions for lakes in Northern and Western Europe. Hydrobiologia, 633, 59–66.CrossRefGoogle Scholar
  13. Cattaneo, A., Galanti, G., Gentinetta, S., & Romo, S. (1998). Epiphytic algae and macroinvertebrates on submerged and floating-leaved macrophytes in an Italian lake. Freshwater Biology, 39, 725–740.CrossRefGoogle Scholar
  14. Cellamare, M., Leitão, M., Coste, M., Dutartre, A., & Haury, J. (2010). Tropical phytoplankton taxa in Aquitaine lakes (France). Hydrobiologia, 639, 129–145.CrossRefGoogle Scholar
  15. Cemagref. (1982). Etude des méthodes biologiques d‘appréciation quantitative de la qualité des eaux. Rapport Q.E. Lyon A.F.—Bassin Rhône-Méditérannée-Corse.Google Scholar
  16. Compère, P. (2001). Ulnaria (Kützing) Compère, a new genus name for Fragilaria subgen. Alterasynedra Lange-Bertalot with comments on the typification of Synedra Ehrenberg. In R. Jahn, J. P. Kociolek, A. Witkowski, & P. Compère (Eds.), Lange-Bertalot-Festschrift, studies on diatoms (pp. 97–101). Ruggell: Gantnter.Google Scholar
  17. Coops, H., Kerkum, F., van den Berg, M., & van Splunder, I. (2007). Submerged macrophyte vegetation and the European Water Framework Directive: Assessment of status and trends in shallow, alkaline lakes in the Netherlands. Hydrobiologia, 584, 395–402.CrossRefGoogle Scholar
  18. Coste, M., & Ector, L. (2000). Diatomées invasives exotiques ou rares en France: Principales observations effectuées au cours des dernières décennies. Systematics and Geography of Plants, 70, 373–400.CrossRefGoogle Scholar
  19. Coste, M., Boutry, S., Tison-Rosebery, J., & Delmas, F. (2009). Improvements of the Biological Diatom Index (BDI): Description and efficiency of the new version (BDI-2006). Ecological Indicators, 9, 621–650.CrossRefGoogle Scholar
  20. Crossetti, L., & Bicudo, C. D. M. (2008). Phytoplankton as a monitoring tool in a tropical urban shallow reservoir (Garças Pond): The assemblage index application. Hydrobiologia, 610, 161–173.CrossRefGoogle Scholar
  21. de Foucault, B. (2002). Habitats humides: Eaux oligotrophes très peu minéralisées des plaines sablonneuses (Littorelletalia uniflorae). In V. Gaudillat & J. Haury (Eds.), Cahiers d’habitats Natura 2000 (pp. 59–63). Paris: La documentation française.Google Scholar
  22. Dokulil, M. T. (2003). Algae as ecological bio-indicators. In B. A. Markert, A. M. Breure, & H. G. Zeichmeister (Eds.), Bioindicators and biomonitors—principles, concepts and applications (pp. 285–327). San Diego: Elsevier.CrossRefGoogle Scholar
  23. Dutartre, A. (1986). Aquatic plants introduced in freshwater lakes and ponds of Aquitaine (France): Dispersion and ecology of Lagarosiphon major and Ludwigia peploides. In: European Weed Research Society (Eds.), Proceedings EWRS-AAB, 7th symposium on aquatic weeds (pp. 93–98). Loughborough, Leicestershire.Google Scholar
  24. Dutartre, A., & Capdevielle, P. (1982). Répartition actuelle de quelques végétaux vasculaires aquatiques introduits dans le sud-ouest de la France. In J. J. Symoens, S. S. Hooper, & P. Compère (Eds.), Studies on aquatic vascular plants (pp. 390–393). Brussels: Royal Botanical Society of Belgium.Google Scholar
  25. Dutartre, A., Delarche, A., & Dulong, J. (1989). Plan de gestion de la végétation aquatique des lacs et étangs landais. Bordeaux: Cemagref, Division Qualité des Eaux, Pêche et Pisciculture, GEREA.Google Scholar
  26. Dutartre, A., Haury, J., & Planti-Tabacchi, A. M. (1997). Introductions de macrophytes aquatiques et riverains dans les hydrosystèmes français métropolitains: Essai de bilan. Bulletin francais de la pêche et de la pisciculture, 344/345, 407–426.CrossRefGoogle Scholar
  27. Fott, B., & Huber Pestalozzi, G. (1972). Das Phytoplankton des Susswassers: Teil. 6, Chlorophyceae (Grunalgen) Ordnung: Tetrasporales. Stuttgart: Schweizerbart’sche verlagsbuchhandlung.Google Scholar
  28. Gaudillat, V., & Haury, J. (2002). Connaissance et gestion des habitats et des espèces d’intérêt communautaire. Tome 3—Habitats humides. Paris: La documentation française.Google Scholar
  29. Haury, J., Peltre, M.-C., Tremolières, M., Barbe, J., Thiebaut, G., Bernez, I., et al. (2006). A new method to assess water trophy and organic pollution—the Macrophyte Biological Index for Rivers (IBMR): Its application to different types of river and pollution. Hydrobiologia, 570, 153–158.CrossRefGoogle Scholar
  30. Havens, K. E., James, R. T., East, T. L., & Smith, V. H. (2003). N:P ratios, light limitation, and cyanobacterial dominance in a subtropical lake impacted by non-point source nutrient pollution. Environmental Pollution, 122, 379–390.CrossRefGoogle Scholar
  31. Hillebrand, H., Dürselen, C.-D., Kirschtel, D., Pollingher, U., & Zohary, T. (1999). Biovolume calculation for pelagic and benthic microalgae. Journal of Phycology, 35, 403–424.CrossRefGoogle Scholar
  32. Hofmann, G. (1994). Aufwuchs-Diatomeen in Seen und ihre Eignung als Indikatoren der Trophie. Stuttgart: Cramer.Google Scholar
  33. Hofmann, G. (1999). Trophiebewertung von Seen anhand von Aufwuchsdiatomeen. In W. Tümpling & G. Friedrich (Eds.), Methoden der Biologischen Wasseruntersuchung. Band 2. Biologische Gewässeruntersuchung (pp. 319–333). Jena: Fischer.Google Scholar
  34. Kelly, M. G. (1996). Discussion on diatom-based methods. In B. A. Whitton & E. Rott (Eds.), Use of algae for monitoring rivers II (pp. 79–86). Innsbruck: Studia Student.Google Scholar
  35. King, L., Clarke, G., Bennion, H., Kelly, M., & Yallop, M. (2006). Recommendations for sampling littoral diatoms in lakes for ecological status assessments. Journal of Applied Phycology, 18, 15–25.CrossRefGoogle Scholar
  36. Kirk, J. T. O. (1994). Light and photosynthesis in aquatic ecosystems. Melbourne: Cambridge University Press.CrossRefGoogle Scholar
  37. Komárek, J., & Anagnostidis, K. (1999). Cyanoprokaryota 1. Teil: Chroococcales. Süsswasserflora von Mitteleuropa 19/1. Stuttgart: Fischer.Google Scholar
  38. Komárek, J., & Anagnostidis, K. (2005). Cyanoprokaryota 2. Teil: Oscillatoriales. Süsswasserflora von Mitteleuropa 19/2. München: Elsevier.Google Scholar
  39. Komárek, J., & Fott, B. (1983). Chlorophyceae (Grünalgen), Ordnung: Chlorococcales. Stuttgart: Schweizerbart’sche Verlagsbuchhandlung.Google Scholar
  40. Krammer, K. (1997). Die cymbelloiden Diatomeen. Teil 2: Encyonema part., Encyonopsis und Cymbellopsis. Stuttgart: Cramer.Google Scholar
  41. Krammer, K., & Lange-Bertalot, H. (1986–1991). Bacillariophyceae 1. Teil: Naviculaceae; 2. Teil: Bacillariaceae, Epithemiaceae, Surirellaceae; 3. Teil: Centrales, Fragilariaceae, Eunotiaceae; 4. Teil: Achnanthaceae. Kritische Ergänzungen zu Navicula (Lineolatae) und Gomphonema. Stuttgart: Fischer.Google Scholar
  42. Lambert, E. (2002). Habitats humides: Communautés à characées des eaux oligo-mésotrophes faiblement acides à faiblement alcalines. In V. Gaudillat & J. Haury (Eds.), Cahiers d’habitats Natura 2000 (pp. 107–111). Paris: La documentation française.Google Scholar
  43. Lambert-Servien, E., Clemenceau, G., Gabory, O., Douillard, E., & Haury, J. (2006). Stoneworts (Characeae) and associated macrophyte species as indicators of water quality and human activities in the Pays-de-la-Loire region, France. Hydrobiologia, 570, 107–115.CrossRefGoogle Scholar
  44. Leitão, M., & Léglize, L. (2000). Long-term variations of epilimnetic phytoplankton in an artificial reservoir during a 10-year survey. Hydrobiologia, 424, 39–49.CrossRefGoogle Scholar
  45. Lepistö, L., Holopainen, A.-L., & Vuoristo, H. (2004). Type-specific and indicator taxa of phytoplankton as a quality criterion for assessing the ecological status of Finnish boreal lakes. Limnologica, 34, 236–248.CrossRefGoogle Scholar
  46. Lepistö, L., Holopainen, A.-L., Vuoristo, H., & Rekolainen, S. (2006). Phytoplankton assemblages as criterion in the ecological classification of lakes in Finland. Boreal Environment Research, 11, 35–44.Google Scholar
  47. McCune, B., & Mefford, M. J. (1999). PC-ORD: Multivariate analysis of ecological data, version 4. Oregon: MjM Software Design.Google Scholar
  48. Melzer, A. (1999). Aquatic macrophytes as tools for lake management. Hydrobiologia, 395(396), 181–190.CrossRefGoogle Scholar
  49. Mischke, U., Riedmüller, U., Hoehn, E., Schönfelder, I., & Nixdorf, B. (2008). Description of the German system for phytoplankton-based assessment of lakes for implementation of the EU Water Framework Directive (WFD). In U. Mischke & B. Nixdorf (Eds.), Bewertung von Seenmittels Phytoplankton zur Umsetzung der EU-Wasserrahmenrichtlinie (pp. 117–146). Berlin: Eigenverlag BTU Cottbus.Google Scholar
  50. Nixdorf, B., Rektins, A., & Mischke, U. (2008). Standards and thresholds of the EU Water Framework Directive (WFD)—phytoplankton and lakes. In M. Schmidt, J. Glasson, L. Emmelin, & H. Helbron (Eds.), Standards and thresholds for impact assessment (pp. 301–314). Berlin: Springer.CrossRefGoogle Scholar
  51. O.C.D.E. (1982). Eutrophisation des eaux: Méthode de surveillance, d’évaluation et de lutte. Paris: Organisation de Coopération et de Développement Economiques.Google Scholar
  52. Olenina, I., Hajdu, S., Edler, I., Andersson, A., Wasmund, N., Busch, S., et al. (2006). Biovolumes and size-classes of phytoplankton in the Baltic Sea. Baltic Sea Environment Proceedings, 106, 1–144.Google Scholar
  53. Oliver, R. L., & Ganf, G. G. (2000). Freshwater blooms. In B. A. Whitton & M. Potts (Eds.), The ecology of cyanobacteria: Their diversity in time and space (pp. 149–194). The Netherlands: Kluwer Academic.Google Scholar
  54. Padisák, J. (1997). Cylindrospermopsis raciborskii (Woloszyńska) Seenayya et Subba Raju, an expanding, highly adaptive cyanobacterium: Worldwide distribution and review of its ecology. Archiv für Hydrobiologie, Supplement, 107, 563–593.Google Scholar
  55. Padisák, J., & Adrian, R. (1999). Biovolumen. In W. Tümpling & G. Friedrich (Eds.), Methoden der Biologischen Wasseruntersuchung 2. Biologische Gewässeruntersuchung (pp. 334–367). Jena: Fischer.Google Scholar
  56. Padisák, J., Borics, G., Grigorszky, I., & Soroczki-Pinter, E. (2006). Use of phytoplankton assemblages for monitoring ecological status of lakes within the Water Framework Directive: The assemblage index. Hydrobiologia, 553, 1–14.CrossRefGoogle Scholar
  57. Padisák, J., Crossetti, L., & Naselli-Flores, L. (2009). Use and misuse in the application of the phytoplankton functional classification: A critical review with updates. Hydrobiologia, 621, 1–19.CrossRefGoogle Scholar
  58. Pasztaleniec, A., & Poniewozik, M. (2010). Phytoplankton based assessment of the ecological status of four shallow lakes (Eastern Poland) according to Water Framework Directive—a comparison of approaches. Limnologica, 40, 251–259.CrossRefGoogle Scholar
  59. Potapova, M. (2006). Achnanthidium zhakovschikovii sp. nov. (Bacillariophyta) and related species from rivers of Northwestern Russia. Nova Hedwigia, 82, 399–408.CrossRefGoogle Scholar
  60. Pringle, C. M. (2001). Hydrologic connectivity and the management of biological reserves: A global perspective. Ecological Applications, 11, 981–998.CrossRefGoogle Scholar
  61. Prygiel, J., & Haury, J. (2006). Monitoring methods based on algae and macrophytes. In G. Ziglio, M. Siligardi, & G. Flaim (Eds.), Biological monitoring of rivers (pp. 155–170). London: Wiley.CrossRefGoogle Scholar
  62. Prygiel, J., Coste, M., & Bukowska, J. (1999). Review of the major diatom-based techniques for the quality assessment of rivers - State of the art in Europe. In J. Prygiel, B. A. Whitton, & J. Bukowska (Eds.), Use of algae for monitoring rivers III (pp. 224–238). Douai: Agence de l’Eau Artois Picardie.Google Scholar
  63. Reynolds, C. S. (2006). The ecology of freshwater phytoplankton. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  64. Reynolds, C. S., Huszar, V. L. M., Kruk, C., Naselli-Flores, L., & Melo, S. (2002). Towards a functional classification of the freshwater phytoplankton. Journal of Plankton Research, 24, 417–428.CrossRefGoogle Scholar
  65. Rott, E. (1984). Phytoplankton as biological parameter for the trophic characterization of lakes. Verhandlungen Internationale Vereinigung Limnologie, 22, 1078–1085.Google Scholar
  66. Round, F. E., & Bukhtiyarova, L. (1996). Four new genera based on Achnanthes (Achnanthidium) together with a re-definition of Achnanthidium. Diatom Research, 11, 345–361.CrossRefGoogle Scholar
  67. S.A.G.E. (2004). Lacs Médocains: Etat des lieux. Hourtin: Schéma d’Aménagement et de Gestion des Eaux.Google Scholar
  68. Sala, S. E., Guerrero, J. M., & Ferrario, M. E. (1993). Redefinition of Reimeria sinuata (Gregory) Kociolek & Stoermer and recognition of Reimeria uniseriata nov. spec. Diatom Research, 8, 439–446.CrossRefGoogle Scholar
  69. Sand-Jensen, K. (1998). Influence of submerged macrophytes on sediment composition and near-bed flow in lowland streams. Freshwater Biology, 39, 663–679.CrossRefGoogle Scholar
  70. Schaumburg, J., Schmedtje, U., Schranz, C., Köpf, B., Schneider, S., Stelzer, D., et al. (2004a). Instruction protocol for the ecological assessment of lakes for implementation of the EU Water Framework Directive: Macrophytes and phytobenthos. München: Bayerisches Landesamt für Wasserwirtschaft.Google Scholar
  71. Schaumburg, J., Schranz, C., Hofmann, G., Stelzer, D., Schneider, S., & Schmedtje, U. (2004b). Macrophytes and phytobenthos as indicators of ecological status in German lakes—a contribution to the implementation of the Water Framework Directive. Limnologica, 34, 302–314.CrossRefGoogle Scholar
  72. Scheffer, M., Hosper, S. H., Meijer, M.-L., Moss, B., & Jeppesen, E. (1993). Alternative equilibria in shallow lakes. Trends in Ecology & Evolution, 8, 275–279.CrossRefGoogle Scholar
  73. Siver, P. A., & Chock, J. S. (1986). Phytoplankton dynamics in a chrysophycean lake. In J. Kristiansen & R. A. Andersen (Eds.), Chrysophytes: Aspects and problems (pp. 165–183). New York: Cambridge University Press.Google Scholar
  74. Sládeček, V. (1973). System of water quality from the biological point of view. Archiv für Hydrobiologie Beiheft—Ergebnisse der Limnologie, 7, 218.Google Scholar
  75. Smith, V. H., Bierman, V. J., Jones, B. L., & Havens, K. E. (1995). Historical trends in the Lake Okeechobee ecosystem IV. Nitrogen:phosphorus ratios, cyanobacterial dominance, and nitrogen fixation potential. Archiv für Hydrobiologie. Supplementband. Monographische Beiträge, 107, 71–88.Google Scholar
  76. Solheim, L. A., Rekolainen, S., Moe, S., Carvalho, L., Phillips, G., Ptacnik, R., et al. (2008). Ecological threshold responses in European lakes and their applicability for the Water Framework Directive (WFD) implementation: Synthesis of lakes results from the REBECCA project. Aquatic Ecology, 42, 317–334.CrossRefGoogle Scholar
  77. Solimini, A. G., Cardoso, A. C., Carstensen, J., Free, G., Heiskanen, A.-S., Jepsen, N., et al. (2008). The monitoring of ecological status of European freshwaters. In P. P. Quevauviller, U. Borchers, C. Thompson, & T. Simonart (Eds.), The Water Framework Directive: Ecological and chemical status monitoring (pp. 29–60). New York: Wiley.Google Scholar
  78. Sondergaard, M., Jeppesen, E., Jensen, J. P., & Amsinck, S. L. (2005). Water Framework Directive: Ecological classification of Danish lakes. Journal of Applied Ecology, 42, 616–629.CrossRefGoogle Scholar
  79. Stelzer, D., Schneider, S., & Melzer, A. (2005). Macrophyte-based assessment of lakes-a contribution to the implementation of the European Water Framework Directive in Germany. International Review of Hydrobiology, 90, 223–237.CrossRefGoogle Scholar
  80. Stenger-Kovács, C., Buczkó, K., Hajnal, É., & Padisák, J. (2007). Epiphytic, littoral diatoms as bioindicators of shallow lake trophic status: Trophic Diatom Index for Lakes (TDIL) developed in Hungary. Hydrobiologia, 589, 141–154.CrossRefGoogle Scholar
  81. Szilágyi, F., Ács, É., Borics, G., Halasi-Kovács, B., Juhász, P., Kiss, B., et al. (2008). Application of water framework directive in Hungary: Development of biological classification systems. Water Science and Technology, 58(11), 2117–2125.CrossRefGoogle Scholar
  82. Tison, J., Park, Y. S., Coste, M., Wasson, J. G., Ector, L., Rimet, F., et al. (2005). Typology of diatom communities and the influence of hydro-ecoregions: A study on the French hydrosystem scale. Water Research, 39, 3177–3188.CrossRefGoogle Scholar
  83. Vadeboncoeur, Y., & Steinman, A. D. (2002). Periphyton function in lake ecosystems. The Scientific World Journal, 2, 1449–1468.CrossRefGoogle Scholar
  84. Vadeboncoeur, Y., Jeppesen, E., Vander Zanden, M. J., Schierup, H.-H., Christoffersen, K., & Lodge, D. M. (2003). From Greenland to green lakes: Cultural eutrophication and the loss of benthic pathways in lakes. Limnology and Oceanography, 48, 1408–1418.CrossRefGoogle Scholar
  85. Vadeboncoeur, Y., Mcintyre, P. B., & Vander Zanden, M. J. (2011). Borders of biodiversity: Life at the edge of the world’s large lakes. BioScience, 61, 526–537.CrossRefGoogle Scholar
  86. van Dam, H., & Mertens, A. (1993). Diatoms on herbarium macrophytes as indicators for water quality. Hydrobiologia, 269–270, 437–450.CrossRefGoogle Scholar
  87. van Dam, H., Mertens, A., & Sinkeldam, J. (1994). A coded checklist and ecological indicator values of freshwater diatoms from the Netherlands. Netherlands Journal of Aquatic Ecology, 28, 117–133.CrossRefGoogle Scholar
  88. Vanden Berghen, C. (1969). La végétation amphibie des rives des étangs de la Gascogne. Bulletin du Centre d’Etude et de Recherches Scientifiques de Biarritz, 7, 893–963.Google Scholar
  89. Williamson, C. E., Morris, D. P., Pace, M. L., & Olson, O. G. (1999). Dissolved organic carbon and nutrients as regulators of lake ecosystems: Resurrection of a more integrated paradigm. Limnology and Oceanography, 44, 795–803.CrossRefGoogle Scholar
  90. Zelinka, M., & Marvan, P. (1961). Zur Präzisierung der biologischen Klassifikation der Reinheit fliessender Gewässer. Archiv für Hydrobiologie - Supplement/Algological Studies, 57, 389–407.Google Scholar
  91. Zimmerman, G. M., Goetz, H., & Mielke, P. W., Jr. (1985). Use of an improved statistical method for group comparisons to study effects of prairie fire. Ecology, 66, 606–611.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Maria Cellamare
    • 1
  • Soizic Morin
    • 1
  • Michel Coste
    • 1
  • Jacques Haury
    • 2
  1. 1.Cemagref, UR REBXCestas CedexFrance
  2. 2.AGROCAMPUS OUEST/INRA Rennes, Ecologie et Santé des EcosystèmesRennes CedexFrance

Personalised recommendations