Environmental Monitoring and Assessment

, Volume 184, Issue 6, pp 3653–3674 | Cite as

Development and validation of a macroinvertebrate index of biotic integrity (IBI) for assessing urban impacts to Northern California freshwater wetlands

  • Kevin B. Lunde
  • Vincent H. Resh


Despite California policies requiring assessment of ambient wetland condition and compensatory wetland mitigations, no intensive monitoring tools have been developed to evaluate freshwater wetlands within the state. Therefore, we developed standardized, wadeable field methods to sample macroinvertebrate communities and evaluated 40 wetlands across Northern California to develop a macroinvertebrate index of biotic integrity (IBI). A priori reference sites were selected with minimal urban impacts, representing a best-attainable condition. We screened 56 macroinvertebrate metrics for inclusion in the IBI based on responsiveness to percent urbanization. Eight final metrics were selected for inclusion in the IBI: percent three dominant taxa; scraper richness; percent Ephemeroptera, Odonata, and Trichoptera (EOT); EOT richness; percent Tanypodinae/Chironomidae; Oligochaeta richness; percent Coleoptera; and predator richness. The IBI (potential range 0–100) demonstrated significant discriminatory power between the reference (mean = 69) and impacted wetlands (mean = 28). It also declined with increasing percent urbanization (R 2 = 0.53, p < 0.005) among wetlands in an independent validation dataset (n = 14). The IBI was robust in showing no significant bias with environmental gradients. This IBI is a functional tool to determine the ecological condition at urban (stormwater and flood control ponds), as well as rural freshwater wetlands (stockponds, seasonal wetlands, and natural ponds). Biological differences between perennial and non-perennial wetlands suggest that developing separate indicators for these wetland types may improve applicability, although the existing data set was not sufficient for exploring this option.


IBI Lentic Pond Stock pond Bioassessment Biomonitoring 



We thank R Mazor and E Stein for constructive comments on the manuscript; J Carter for assisting with subsampling methods; J Ball and S Feirer for assistance with GIS analyses; M Groff for assisting with the pilot study at Hog Lake, R Mazor and A Rehn for statistical advice; C Seibold for nutrient analyses; C Dunn, S Osman, K Yao, J Xin, M Aghaee, M Baragona, A Strother for assistance with field and laboratory work; Hopland Research and Extension Center, East Bay Regional Parks, Alameda Flood Control and Water Conservation District, and Cities of Novato, Davis, Oakley for sites access. This work was funded with assistance from the Alameda Countywide Cleanwater Program, National Science Foundation Graduate Research Fellowship Program, and EPA STAR Fellowship Program.


  1. Adamus, P., Danielson, T. J., & Gonyaw, A. (2001). Indicators for monitoring biological integrity if inland, freshwater wetlands: a survey of the technical literature (1990–2000). Office of Water, U.S. Environmental Protection Agency. Washington, DC. EPA-843-R-01.
  2. Bailey, R. C., Norris, R. H., & Reynoldson, T. B. (2004). Bioassessment of freshwater ecosystems: using the reference condition approach. Boston: Kluwer.CrossRefGoogle Scholar
  3. Barbour, M. T., Gerritsen, J., Snyder, B. D., & Stribling, J. B. (1999). Rapid bioassessment protocols for use in streams and wadeable rivers: periphyton, benthic macroinvertebrates and fish. 2nd Edition. EPA 841-B-99-002. Washington: Office of Water, U.S. Environmental Protection Agency.Google Scholar
  4. Batzer, D. P., & Wissinger, S. A. (1996). Ecology of insect communities in nontidal wetlands. Annual Review of Entomology, 41, 75–100.CrossRefGoogle Scholar
  5. Berkman, H. E., Rabeni, C. F., & Boyle, T. P. (1986). Biomonitors of stream quality in agricultural areas: fish versus invertebrates. Environmental Management, 10(3), 413–419.CrossRefGoogle Scholar
  6. Boix, D., Gascon, S., Sala, J., Martinoy, M., Gifre, J., & Quintana, X. D. (2005). A new index of water quality assessment in Mediterranean wetlands based on crustacean and insect assemblages: the case of Catalunya (NE Iberian peninsula). Aquatic Conservation-Marine and Freshwater Ecosystems, 15(6), 635–651.CrossRefGoogle Scholar
  7. Brazner, J. C., Danz, N. P., Trebitz, A. S., Niemi, G. J., Regal, R. R., Hollenhorst, T., et al. (2007). Responsiveness of Great Lakes wetland indicators to human disturbances at multiple spatial scales: a multi-assemblage assessment. Journal of Great Lakes Research, 33, 42–66.CrossRefGoogle Scholar
  8. Brown, B. S., Detenbeck, N. E., & Eskin, R. (2005). How probability survey data can help integrate 305(b) and 303(d) monitoring and assessment of state waters. Environmental Monitoring and Assessment, 103(1–3), 41–57. doi: 10.1007/s10661-005-6854-0.CrossRefGoogle Scholar
  9. Carter, J. L., & Fend, S. V. (2005). Setting limits: the development and use of factor-ceiling distributions for an urban assessment using macroinvertebrates. Effects of Urbanization on Stream Ecosystems, 47, 179–191.Google Scholar
  10. Carter, J. L., Resh, V. H., Hannaford, M. J., Myers, M. J., Hauer, F. R., & Lamberti, G. A. (2006). Macroinvertebrates as biotic indicators of environmental quality. In F. R. Hauer & G. A. Lamberti (Eds.), Methods in stream ecology (2nd ed., pp. 805–833). San Diego: Academic Press/Elsevier.Google Scholar
  11. Collins, J. N., Stein, E. D., Sutula, M., Clark, R., Fetscher, A. E., Grenier, L., et al. (2008). California rapid assessment method (CRAM) for wetlands and riparian areas.
  12. Cukjati, J., & Seibold, C. (2010). Kiowa environmental chemistry laboratory procedure manual. Mountain Research Station & Institute of Arctic and Alpine Research, University of Colorado Boulder.
  13. Della Bella, V., Bazzanti, M., & Chiarotti, F. (2005). Macroinvertebrate diversity and conservation status of Mediterranean ponds in Italy: water permanence and mesohabitat influence. Aquatic Conservation-Marine and Freshwater Ecosystems, 15(6), 583–600. doi: 10.1002/aqc.743.CrossRefGoogle Scholar
  14. Everard, M. S. F. M., Powell, A., & Dobson, M. K. (2011). The feasibility of developing multi-taxa indicators for landscape scale assessment of freshwater systems. Freshwater Reviews, 4, 1–19.Google Scholar
  15. Fennessy, M. S., Jacobs, A. D., & Kentula, M. E. (2004). Review of rapid methods for assessing wetland condition. EPA 620-R-04-009. Washington: U.S. Environmental Protection Agency.Google Scholar
  16. Fore, L. S., Paulsen, K., & O'Laughlin, K. (2001). Assessing the performance of volunteers in monitoring streams. Freshwater Biology, 46(1), 109–123.Google Scholar
  17. Garcia-Criado, F., & Trigal, C. (2005). Comparison of several techniques for sampling macroinvertebrates in different habitats of a North Iberian pond. Hydrobiologia, 545, 103–115. doi: 10.1007/s10750-005-2741-5.CrossRefGoogle Scholar
  18. Gernes, M. C., & Helgen, J. C. (2002). Indexes of biological integrity (IBI) for large depressional wetlands in Minnesota. Final Report to U.S. Environmental Protection Agency. Minnesota Pollution Control Agency. St Paul, Minnesota.
  19. Gilliam, H. (2002). Weather of the San Francisco Bay Region. 2nd edition. Berkeley, Ca: University of California Press.Google Scholar
  20. Guildford, S. J., & Hecky, R. E. (2000). Total nitrogen, total phosphorus, and nutrient limitation in lakes and oceans: is there a common relationship? Limnology and Oceanography, 45(6), 1213–1223.CrossRefGoogle Scholar
  21. Helgen, J. C., & Gernes, M. C. (2001). Monitoring the condition of wetlands: indexes of biological integrity using invertebrates and vegetation. In R. B. Rader, D. P. Batzer, & S. A. Wissinger (Eds.), Bioassessment and management of North American freshwater wetlands (pp. 167–185). New York: Wiley.Google Scholar
  22. Herbst, D. B., & Silldorff, E. L. (2009). Development of a benthic macroinvertebrate index of biological integrity (IBI) for stream assessments in the Eastern Sierra Nevada of California. Unpublished technical report for the California State Water Quality Control Board.
  23. Hering, D., Moog, O., Sandin, L., & Verdonschot, P. F. M. (2004). Overview and application of the AQEM assessment system. Hydrobiologia, 516(1), 1–20.CrossRefGoogle Scholar
  24. Homer, C., Huang, C. Q., Yang, L. M., Wylie, B., & Coan, M. (2004). Development of a 2001 National Land-Cover Database for the United States. Photogrammetric Engineering and Remote Sensing, 70(7), 829–840.Google Scholar
  25. Hughes, R. M., Howlin, S., & Kaufmann, P. R. (2004). A biointegrity index (IBI) for coldwater streams of Western Oregon and Washington. Transactions of the American Fisheries Society, 133(6), 1497–1515.CrossRefGoogle Scholar
  26. Jennings, M. R., & Hayes, M. P. (1994). Amphibian and reptile species of special concern in California. Rancho Cordova: California Department of Fish and Game.Google Scholar
  27. Karr, J. R., & Chu, E. W. (1999). Restoring life in running waters. Washington: Island Press.Google Scholar
  28. Klemm, D. J., Blocksom, K. A., Fulk, F. A., Herlihy, A. T., Hughes, R. M., Kaufmann, P. R., et al. (2003). Development and evaluation of a Macroinvertebrate Biotic Integrity Index (MBII) for regionally assessing Mid-Atlantic Highlands streams. Environmental Management, 31(5), 656–669. doi: 10.1007/s00267-002-2945-7.CrossRefGoogle Scholar
  29. Knapp, R. A., Matthews, K. R., & Sarnelle, O. (2001). Resistance and resilience of alpine lake fauna to fish introductions. Ecological Monographs, 71(3), 401–421.CrossRefGoogle Scholar
  30. Lehtinen, R. M., Galatowitsch, S. M., & Tester, J. R. (1999). Consequences of habitat loss and fragmentation for wetland amphibian assemblages. Wetlands, 19(1), 1–12.CrossRefGoogle Scholar
  31. Mazor, R. D., Schiff, K., Ritter, K., Rehn, A., & Ode, P. (2010). Bioassessment tools in novel habitats: an evaluation of indices and sampling methods in low-gradient streams in California. Environmental Monitoring and Assessment, 167(1–4), 91–104. doi: 10.1007/s10661-009-1033-3.CrossRefGoogle Scholar
  32. McCune, B., & Grace, J. B. (2002). Analysis of ecological communities. Gleneden Beach: MjM Software Design.Google Scholar
  33. McCune, B., & Mefford, M. J. (2006). PC-ORD Multivariate Analysis of Ecological Data. Version 5.31. Gleneden Beach: MjM Software Design.Google Scholar
  34. Murkin, H. R. (1989). The basis for food chains in prairie wetlands. In A. van der Valk (Ed.), Northern prairie wetlands (pp. 316–339). Ames: Iowa State University.Google Scholar
  35. Nakano, S., & Murakami, M. (2001). Reciprocal subsidies: dynamic interdependence between terrestrial and aquatic food webs. Proceedings of the National Academy of Sciences of the United States of America, 98(1), 166–170.CrossRefGoogle Scholar
  36. National Resouces Agency (2010). State of the state’s wetlands. Sacramento, CA: Natural Resources Agency, State Of California.
  37. Ode, P. R., Rehn, A. C., & May, J. T. (2005). A quantitative tool for assessing the integrity of southern coastal California streams. Environnemental Management, 35(4), 493–504. doi: 10.1007/s00267-004-0035-8.CrossRefGoogle Scholar
  38. Olson, D. H., Leoard, W. P., & Bury, R. B. (Eds.). (1997). Sampling amphibians in lentic habitats: methods and approaches for the Pacific Northwest. Olympia: Society for Northwestern Vertebrate Biology.Google Scholar
  39. PRISM Climate Group (2010). Precipitation 800 m annual normals (1971–2000). Corvallis, OR: Oregon State University.
  40. Purcell, A. H., Bressler, D. W., Paul, M. J., Barbour, M. T., Rankin, E. T., Carter, J. L., et al. (2009). Assessment tools for urban catchments: developing biological indicators based on benthic macroinvertebrates. Journal of the American Water Resources Association, 45(2), 306–319. doi: 10.1111/j.1752-1688.2008.00279.x.CrossRefGoogle Scholar
  41. Rehn, A. C., Ode, P. R., & May, J. T. (2005). Development of a benthic index of biotic integrity (B-IBI) for wadeable streams in northern coastal California and its application to regions 305(b) assessment. Unpublished technical report for the California State Water Quality Control Board.
  42. Rehn, A. C., Ode, P. R., & May, J. T. (2008). An index of biotic integrity (IBI) for perennial streams in California's Central Valley. Unpublished technical report for the California State Water Quality Control Board
  43. Resh, V. H. (2007). Multinational, freshwater biomonitoring programs in the developing world: lessons learned from African and Southeast Asian river surveys. Environmental Management, 39(5), 737–748. doi: 10.1007/s00267-006-0151-8.CrossRefGoogle Scholar
  44. Resh, V. H. (2008). Which group is best? Attributes of different biological assemblages used in freshwater biomonitoring programs. Environmental Monitoring and Assessment, 138(1–3), 131–138. doi: 10.1007/s10661-007-9749-4.CrossRefGoogle Scholar
  45. Richards, A. B., & Rogers, D. C. (2006). List of freshwater macroinvertebrate taxa from California and adjacent states including standard taxonomic effort levels. Southwestern Association of Freshwater Invertebrate Taxonomists.
  46. Richter, K. O., & Azous, A. L. (1995). Amphibian occurrence and wetland characteristic in the Puget-Sound Basin. Wetlands, 15(3), 305–312.CrossRefGoogle Scholar
  47. Rogers, D. C. (1998). Aquatic macroinvertebrate occurrences and population trends in constructed and natural vernal pools in Folsom, California. In C. W. Witham, E. T. Bauder, D. Belk, W. R. Ferren Jr., & R. Ornduff (Eds.), Proceedings from a 1996 conference: ecology, conservation and management of vernal pool ecosystems (pp. 224–235). Sacramneto: California Native Plant Society.Google Scholar
  48. Rosenberg, D. M., & Resh, V. H. (1993a). Freshwater biomonitoring and benthic macroinvertebrates. New York: Chapman & Hall.Google Scholar
  49. Rosenberg, D. M., & Resh, V. H. (1993b). Introduction to freshwater biomonitoring and benthic macroinvertebrates. In D. M. Rosenberg & V. H. Resh (Eds.), Freshwater biomonitoring and benthic macroinvertebrates (pp. 1–9). New York: Chapman & Hall.Google Scholar
  50. Roy, A. H., Rosemond, A. D., Paul, M. J., Leigh, D. S., & Wallace, J. B. (2003). Stream macroinvertebrate response to catchment urbanisation (Georgia, USA). Freshwater Biology, 48(2), 329–346.CrossRefGoogle Scholar
  51. Sgrillo, R. (2009). GE-Path Version 1.4.4.
  52. Smith, M. J., Kay, W. R., Edward, D. H. D., Papas, P. J., Richardson, K. S., Simpson, J. C., et al. (1999). AusRivAS: using macroinvertebrates to assess ecological condition of rivers in Western Australia. Freshwater Biology, 41(2), 269–282.CrossRefGoogle Scholar
  53. Smith, A. J., Bode, R. W., & Kleppel, G. S. (2007). A nutrient biotic index (NBI) for use with benthic macroinvertebrate communities. Ecological Indicators, 7(2), 371–386. doi: 10.1016/j.ecolind.2006.03.001.CrossRefGoogle Scholar
  54. Solimini, A. G., Bazzanti, M., Ruggiero, A., & Carchini, G. (2008). Developing a multimetric index of ecological integrity based on macroinvertebrates of mountain ponds in central Italy. Hydrobiologia, 597, 109–123. doi: DOI10.1007/s10750-007-9226-7.CrossRefGoogle Scholar
  55. Southerland, M. T., Jung, R. E., Baxter, D. P., Chellman, I. C., Mercurio, G., & Volstad, J. H. (2004). Stream salamanders as indicators of stream quality in Maryland, USA. Applied Herpetology, 2(1), 23–46.CrossRefGoogle Scholar
  56. Stein, E. D., Fetscher, A. E., Clark, R. P., Wiskind, A., Grenier, J. L., Sutula, M., et al. (2009). Validation of a wetland rapid assessment method: use of EPA's Level 1-2-3 framework for method and testing and refinement. Wetlands, 29(2), 648–665.CrossRefGoogle Scholar
  57. Stoddard, J. L., Larsen, D. P., Hawkins, C. P., Johnson, R. K., & Norris, R. H. (2006). Setting expectations for the ecological condition of streams: the concept of reference condition. Ecological Applications, 16(4), 1267–1276. doi: doi:10.1890/1051-0761(2006)016[1267:SEFTEC]2.0.CO;2.CrossRefGoogle Scholar
  58. Sutula, M. A., Stein, E. D., Collins, J. N., Fetscher, A. E., & Clark, R. (2006). A practical guide for the development of a wetland assessment method: the California experience. Journal of the American Water Resources Association, 42(1), 157–175.CrossRefGoogle Scholar
  59. Tangen, B. A., Butler, M. G., & Michael, J. E. (2003). Weak correspondence between macroinvertebrate assemblages and land use in Prairie Pothole Region wetlands, USA. Wetlands, 23(1), 104–115.CrossRefGoogle Scholar
  60. Thomson, J. D., Weiblen, G., Thomson, B. A., Alfaro, S., & Legendre, P. (1996). Untangling multiple factors in spatial distributions: lilies, gophers, and rocks. Ecology, 77(6), 1698–1715.CrossRefGoogle Scholar
  61. Thorp, J. H., & Covich, A. P. (2001). Ecology and classification of North American freshwater invertebrates (2nd ed.). San Diego: Academic.Google Scholar
  62. Trigal, C., Garcia-Criado, F., & Fernandez-Alaez, C. (2006). Among-habitat and temporal variability of selected macroinvertebrate based metrics in a Mediterranean shallow lake (NW spain). Hydrobiologia, 563, 371–384. doi: 10.1007/s10750-006-0031-5.CrossRefGoogle Scholar
  63. USDA Forest Service (2006). Calveg Tiles Ecoregions. Pacific Southwest Region Remote Sensing Lab.
  64. U.S. EPA. (1998). Lake and reservoir bioassessment and biocriteria. EPA-841-B-98-007. Washington: Office of Water, U.S. Environmental Protection Agency.Google Scholar
  65. U.S. EPA. (2002a). Methods for evaluating wetland condition: developing an invertebrate index of biological integrity for wetlands. EPA-822-R-02-219. Washington: Office of Water, U.S. Environmental Protection Agency.Google Scholar
  66. U.S. EPA. (2002b). Methods for evaluating wetland condition: using amphibians in bioassessments of wetlands. EPA-822-R-02-022. Washington: Office of Water, U.S. Environmental Protection Agency.Google Scholar
  67. U.S. EPA (2003). Wetland bioassessment case studies. U.S. Environmental Protection Agency
  68. U.S. Geolgical Survey and U.S. Environmental Protection Agency (1999). National Hydrography Dataset-Medium Resolution.
  69. Williams, D. D. (1997). Temporary ponds and their invertebrate communities. Aquatic Conservation-Marine and Freshwater Ecosystems, 7(2), 105–117.CrossRefGoogle Scholar
  70. Williams, D. D. (2006). The biology of temporary waters. Oxford: Oxford University Press.Google Scholar
  71. Wolda, H. (1981). Similarity indexes, sample-size and diversity. Oecologia, 50(3), 296–302.CrossRefGoogle Scholar
  72. Yoder, C. O., & Rankin, E. T. (1998). The role of biological indicators in a state water quality management process. Environmental Monitoring and Assessment, 51(1–2), 61–88.CrossRefGoogle Scholar
  73. Zar, J. H. (1999). Biostatistical analysis. 4th Edition. Upper Saddle River, New Jersey: Prentice Hall.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Environmental Science, Policy, and ManagementUniversity of California, BerkeleyBerkeleyUSA

Personalised recommendations