Environmental Monitoring and Assessment

, Volume 184, Issue 5, pp 2741–2761 | Cite as

Evaluating Integrated Watershed Management using multiple criteria analysis—a case study at Chittagong Hill Tracts in Bangladesh

  • Shampa Biswas
  • Harald Vacik
  • Mark E. Swanson
  • S. M. Sirajul Haque


Criteria and indicators assessment is one of the ways to evaluate management strategies for mountain watersheds. One framework for this, Integrated Watershed Management (IWM), was employed at Chittagong Hill Tracts region of Bangladesh using a multi-criteria analysis approach. The IWM framework, consisting of the design and application of principles, criteria, indicators, and verifiers (PCIV), facilitates active participation by diverse professionals, experts, and interest groups in watershed management, to explicitly address the demands and problems to measure the complexity of problems in a transparent and understandable way. Management alternatives are developed to fulfill every key component of IWM considering the developed PCIV set and current situation of the study area. Different management strategies, each focusing on a different approach (biodiversity conservation, flood control, soil and water quality conservation, indigenous knowledge conservation, income generation, watershed conservation, and landscape conservation) were assessed qualitatively on their potential to improve the current situation according to each verifier of the criteria and indicator set. Analytic Hierarchy Process (AHP), including sensitivity analysis, was employed to identify an appropriate management strategy according to overall priorities (i.e., different weights of each principle) of key informants. The AHP process indicated that a strategy focused on conservation of biodiversity provided the best option to address watershed-related challenges in the Chittagong Hill Tracts, Bangladesh.


Multi-criteria analysis (MCA) Criteria and indicators (C&I) assessment Integrated Watershed Management (IWM) Resource planning Key stakeholders Analytic Hierarchy Process (AHP) 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ananda, J., & Herath, G. (2003). The use of Analytic Hierarchy Process to incorporate stakeholder preferences into regional forest planning. Forest Policy and Economics, 5, 13–26. doi: 10.1016/S1389-9341(02)00043-6.CrossRefGoogle Scholar
  2. Bailey, D. E., Loos, J. J., Perry, E. S., & Wood, R. J. (2000). A retrospective evaluation of 316(b) mitigation options using a decision analysis framework. Environmental Science and Policy, 3, 25–36. doi: 10.1016/S1462-9011(00)00024-1.CrossRefGoogle Scholar
  3. Bakkes, J.-A., Van Den Born, G.-J., Helder, J.-C., Swart, R.-J., Hope, C.-W., & Parker, J.-D. (1994). An overview of environmental indicators: State of the art and perspectives. UNEP/EATR.94–01, RIVM/402001001. Nairobi Environmental Assessment Sub-Programme, United Nations Environment Programme.Google Scholar
  4. Beattie, B. B. (1969). Watershed conditions and watershed research needs in Chittagong Hill Tracts (p. 15). Project Report 2, UNDP/FAO Project, BGD/72/005, BFRI, Chittagong, Bangladesh.Google Scholar
  5. Biswas, S. R., & Choudhury, J. K. (2007). Forests and forest management practices in Bangladesh: The question of sustainability. International Forestry Review, 9(2), 627–640. doi: 10.1505/ifor.9.2.627.CrossRefGoogle Scholar
  6. Biswas, S., Swanson, M. E., Shoaib, J. U., & Haque, S. M. (2010). Changes in soil chemical properties under Modern and Traditional farming system at Khagrachari, Chittagong Hill Tracts, Bangladesh. Journal of Forestry Research, 21(4), 451–456. doi: 10.1007/s11676-010-0096-x.CrossRefGoogle Scholar
  7. Chapin, F. S., Zavaleta, E. S., Eviner, V. T., Naylor, R. L., Vitousek, P. M., Reynolds, H. L., et al. (2000). Consequences of changing biodiversity. Nature, 405, 234–242. doi: 10.1038/35012241.CrossRefGoogle Scholar
  8. Chowdhury, M. S. H, Biswas, S., Haque, S. M. S, Muhammed, N., & Koike, M. (2007a). Comparative analysis of some selected macronutrients of soil orange orchard and degraded forests in Chittagong Hill Tracts, Bangladesh. Journal of Forest Research, 18(1), 27–30. doi: 10.1007/s11676-007-0005-0.CrossRefGoogle Scholar
  9. Chowdhury, M. S. H, Halim, M. A, & Biswas, S. (2007b). Comparative evaluation of physical properties in soils of orange orchard and bushy forest in Chittagong hill tracts, Bangladesh. Journal of Forestry Research, 18(3), 245-248. doi: 10.1007/s11676-007-0050-8.CrossRefGoogle Scholar
  10. CIFOR (1997). CIFOR annual report 1996. CIFOR, Bogor, Indonesia (66 pp.). CIFOR annual report.Google Scholar
  11. CIFOR (1999). CIFOR criteria and indicators generic template. The Criteria and Indicators Toolbox Series No. 2. CIFOR C&I Team.Google Scholar
  12. Datta, D. K., & Virgo, K. J. (1998) Towards sustainable water-shed development through people’s participation. Mountain Research and Development, 18(3), 213–233. Scholar
  13. Dewan, S., & Vacik, H. (2010). Analysis of regeneration and species diversity along human induced disturbances in the Kassalong Reserve Forest at Chittagong Hill Tracts, Bangladesh. Ecology, 29, 307–325. doi: 10.4149/ekol_2010_03_307.Google Scholar
  14. FD (2007).
  15. Fernandes, L., Ridgley, M. A., & van’t Hof, T. (1999). Multiple criteria analysis integrates economic ecological and social objectives for coral reef managers. Coral Reefs, 18, 393–402. doi: 10.1007/s003380050217.CrossRefGoogle Scholar
  16. Fisher, B. E. A. (2006). Fuzzy approaches to environmental decisions: Application to air quality. Environmental Science and Policy, 9(1), 22–31. doi: 10.1016/j.envsci.2005.08.006.CrossRefGoogle Scholar
  17. French, S., & Geldermann, J. (2005). The varied contexts of environmental decision problems and their implications for decision support. Environmental Science and Policy, 8(4), 378–391. doi: 10.1016/j.envsci.2005.04.008.CrossRefGoogle Scholar
  18. Gafur, A., Jensen, J. R. Aunsø, Borggaard, O. K., & Petersen, L. (2003). Runoff and losses of soil and nutrients from small watersheds under shifting cultivation (Jhum) in the Chittagong Hill Tracts of Bangladesh. Journal of Hydrology, 279(1–4), 293–309. doi: 10.1016/S0022-1694(02)00351-7.CrossRefGoogle Scholar
  19. Garfi, M., Ferrer-Marti, L., Bonoli, A., & Tondelli, S. (2011). Multi-criteria analysis for improving strategic environmental assessment of water programmes. A case study in semi-arid region of Brazil. Journal of Environmental Management, 92(3), 665–675. doi: 10.1016/j.jenvman.2010.10.007.CrossRefGoogle Scholar
  20. Golden, B., Marker, P., & Wasil, E. (1989). The Analytic Hierarchy Process: Applications and studies. Dordrecht: Springer.Google Scholar
  21. Hajkowicz, S., & Collins, K. (2007). A review of multiple criteria analysis for water resource planning and management. Water Resource Management, 21, 1553–1566. doi: 10.1007/s11269-006-9112-5.CrossRefGoogle Scholar
  22. Hajkowicz, S., & Higgins, A. (2008). A comparison of multi-criteria techniques for water resource management. European Journal of Operational Research, 184, 255–265. doi: 10.1016/j.ejor.2006.10.045.CrossRefGoogle Scholar
  23. Haque, S. M. S., Karmakar, S., & Hossain, M. M. (2010). Effect of land cover on water quality of creek and seepage in mountainous watershed in Bangladesh. Journal of Forestry Research, 21(2), 251–254. doi: 10.1007/s11676-010-0041-z.CrossRefGoogle Scholar
  24. Hammond, A., Adriaanse, A., Rodenburg, E., Bryant, D., & Woodward, R. (1995). Environmental indicators: A systematic approach to measuring and reporting on environmental policy performance in the context of sustainable development. Washington: World Resource Institute.Google Scholar
  25. Heathcote, I. W. (1998). MCA integrated watershed management: Principles and practices. New York: Wiley.Google Scholar
  26. Hettelingh, J. P., De Hann, B. J., Strengers, B. J., Klein Goldewijk, C. G. M., Van Woerden, J. W., Pearce, D. W., et al. (1998). Integrated environmental assessment of the baseline scenario for the EU state of the environment. 1998 Report, The Netherlands.Google Scholar
  27. In, H., & Olson, D. (2004). Requirements negotiation using multi-criteria preference analysis. Journal of Universal Computer Science, 10(4), 306–325.Google Scholar
  28. Ison, R. L., Roling, N., & Watson, D. (2007). Challenges to science and society in the sustainable management and use of water: Investigating the role of social learning. Environmental Science and Policy, 10(6), 499–511. doi: 10.1016/j.envsci.2007.02.008.CrossRefGoogle Scholar
  29. Jønch-Clausen, T., & Fugl, J. (2001). Firming up the conceptual basis of integrated water resources management. International Journal of Water Resources Development, 17, 501–510. doi: 10.1080/07900620120094055.CrossRefGoogle Scholar
  30. Karmakar, S., Haque, S. M., Hossain, M. M., & Shafiq, M. (2011). Water quality of Kaptai reservoir in Chittagong Hill Tracts of Bangladesh. Journal of Forestry Research, 22(1), 8792. doi: 10.1007/s11676-011-0131-6.CrossRefGoogle Scholar
  31. Karvetski, C. W., Lambert, J. H., Keisler, J. M., & Linkov, I. (2011). Integration of decision analysis and scenario planning for coastal engineering and climate change. Transactions on Systems, Man, and Cybernetics, Part A, 41(1), 63–73. doi: 10.1109/TSMCA.2010.2055154.CrossRefGoogle Scholar
  32. Khan, M. A. A., & Haque, S. M. S. (2003). Features and characteristics of Bangladesh watershed (p. 51). B.Sc. (Hons) Project paper, Institute of Forestry and Environmental Sciences, University of Chittagong, Chittagong, Bangladesh.Google Scholar
  33. Khisa, S. K., Shoaib, J. U., & Khan, N. A. (2006). Conservation approaches and technologies of hill farming and natural resource management practices documented from Chittagong Hill Tracts. Bangladesh, BANCAT, CHTDB. Khagrachari.Google Scholar
  34. Kodikara, P. N., Perera, B. J. C., & Kularathna, M. D. U. P. (2010). Stakeholder preference elicitation and modelling in multi-criteria decision analysis—A case study on urban water supply. European Journal of Operational Research, 206, 209–220. doi: 10.1016/j.ejor.2010.02.016.CrossRefGoogle Scholar
  35. Lammerts van Bueren, F., & Blom, F. (1997). Hierarchical framework for the formulation for sustainable forest management standards: Principles, criteria and indicators. Wageningen: Tropenbos Foundation.Google Scholar
  36. Lamy, F., Bolte, J., Santelmann, M., & Smith, C. (2002). Development and evaluation of multiple-objective decision-making methods for watershed management planning. Journal of the American Water Resources Association, 38, 517–529. doi: 10.1111/j.1752-1688.2002.tb04334.x.CrossRefGoogle Scholar
  37. Mendoza, G. A. (1997a). Introduction to the Analytic Hierarchy Process: Theory and application to natural resources management. In Proceedings: Joint annual meeting of the American Congress on Surveying and Mapping (ACSM); American Association of Photogrammetry and Remote Sensing (ASPRS), and Resources Technology Institute (RTI), 5–10 April. Seattle, WA.Google Scholar
  38. Mendoza, G. A. (1997b). A GIS based multi-criteria approaches to land suitability assessment and allocation. In Proceedings: Seventh international symposium on systems analysis in forest resources, 28–31 May. Traverse City, Michigan.Google Scholar
  39. Mendoza, G. A., & Martins, H. (2006). Multi-criteria decision analysis in natural resource management: A critical review of methods and new modelling paradigms. Forest Ecology and Management, 230, 1–22. doi: 10.1016/j.foreco.2006.03.023.CrossRefGoogle Scholar
  40. Mendoza, G. A., & Prabhu, R. (2000a). Multiple criteria decision making approaches to assessing forest sustainability using criteria and indicators: A case study. Forest Ecology and Management, 131(3), 107–126. doi: 10.1016/S0378-1127(99)00204-2.CrossRefGoogle Scholar
  41. Mendoza, G. A., & Prabhu, R. (2000b). Evaluating and selecting criteria and indicators for forest sustainability: A case study on participatory assessment under CBFM in the Philippines. Journal of Environmental Science and Management, 2(2), 33–53.Google Scholar
  42. Mendoza, G. A., & Prabhu, R. (2000c). Multiple criteria analysis for assessing criteria and indicators in sustainable forest management: A case study on participatory decision making in a Kalimantan forest. Environmental Management, 26(6), 659–673.CrossRefGoogle Scholar
  43. Microsoft Corporation (1995). Powerpoint version 1993–2007. Redmond, Washington.Google Scholar
  44. Milder, J. C., Scherr, S. J., & Bracer, C. (2010). Trends and future potential of payment for ecosystem services to alleviate rural poverty in developing countries. Ecology and Society, 15(2), 4.Google Scholar
  45. National Research Council (1999). New strategies for America’s watersheds. Washington: National Academy Press.Google Scholar
  46. Paneque Salgadoa, P., Corral Quintana, S., & Guimaraes Pereirac, A. (2009). Participative multi-criteria analysis for the evaluation of water governance alternatives: A case in the Costa del Sol (Malaga). Ecological Economics, 68, 990–1005. doi: 10.1016/j.ecolecon.2006.11.008.CrossRefGoogle Scholar
  47. Prabhu, R., Colfer, C., & Dudley, R. G. (1998). Guidelines for developing, testing and selecting criteria and indicators for sustainable forest management. CIFOR Special Publication.Google Scholar
  48. Prabhu, R., Colfer, C. J. P., & Dudley, R. G. (1999). Guidelines for developing, testing and selecting criteria and indicators for sustainable forest management. Criteria and Indicators Toolbox Series No. 1. CIFOR, Bogor, Indonesia.Google Scholar
  49. Prato, T. (1999). Multiple attribute decision analysis for ecosystem management. Ecological Economics, 30, 207–222. doi: 10.1016/S0921-8009(99)00002-6.CrossRefGoogle Scholar
  50. Qureshi, M. E., & Harrison, S. H. (2003). Application of the Analytic Hierarchy Process to riparian revegetation policy options. Small-Scale Forest Economics, Management and Policy, 2(3), 441–458.Google Scholar
  51. Rahman, M. M., Ainun, N., & Vacik, H. (2009). Anthropogenic disturbances and plant diversity of the Madhupur Sal forests (Shorea robusta C.F. Gaertn.) of Bangladesh. The International Journal of Biodiversity Science, Ecosystems Services & Management, 5(3), 162–173. doi: 10.1080/17451590903236741.CrossRefGoogle Scholar
  52. Reavill, L. R. P., & Rahman, T. G. (1995). A systems-science-based analysis of the factors that influence and aggravate the effects of flooding in Bangladesh. Technological Forecasting and Social Change, 48, 89–101. doi: 10.1016/0040-1625(94)00068-8.CrossRefGoogle Scholar
  53. Saaty, T. L. (1995). Decision making for leaders: The Analytic Hierarchy Process for decisions in a complex world. Pittsburgh: RWS.Google Scholar
  54. Shackley, S., & McLachlan, C. (2006). Trade-offs in assessing different energy futures: A regional multi-criteria assessment of the role of carbon dioxide capture and storage. Environmental Science and Policy, 9(4), 376–391. doi: 10.1016/j.envsci.2006.01.006.CrossRefGoogle Scholar
  55. SRDI (1987). Soil Research and Development Institute mapGoogle Scholar
  56. Steiguer, J. E. D., Duberstein, J., & Lopes, V. (2003). The Analytic Hierarchy Process as a means for Integrated Watershed Management (pp. 734–740). Tucson: School of Renewable Natural Resources, University of Arizona.Google Scholar
  57. Swallow, B. M., Kallesoe, M. F., Iftikhar, U. A., van Noordwijk, M., Bracer, C., Scherr, S. J., et al. (2009). Compensation and rewards for environmental services in the developing world: Framing pan-tropical analysis and comparison. Ecology and Society, 14(2), 26.Google Scholar
  58. Swart, R. J., & Bakkes, J. A. (Eds.) (1995). Scanning the global environment: A framework and methodology for integrated environmental reporting and assessment. Environmental assessment sub-programme. Nairobi: United Nations Environment Programme. UNEP/EATR.95–01, RIVM 402001002.Google Scholar
  59. Tiwari, K. R., Rosham, M. B., & Sitaula, B. K. (2008). Natural resource and watershed management in Sourh Asia: A comparative evaluation with special references to Nepal. The Journal of Agriculture and Environment, 9, 72–89Google Scholar
  60. Thomas, J., & Durham, B. (2003). Integrated water resource management: Looking at the whole picture. Desalination, 156(1–3), 21–28. doi: 10.1016/S0011-9164(03)00320-5.CrossRefGoogle Scholar
  61. Turner, W. R., Brandon, K., Brooks, T. M., Costanza, R., da Fonseca, G. A. B., & Portela, R. (2007). Global conservation of biodiversity and ecosystem services. Bioscience, 57, 868–873. doi: 10.1641/B571009.CrossRefGoogle Scholar
  62. USDA Forest Service (1997). Report of the United States on the criteria and indicators for the sustainable management of temperate and boreal forests. U.S. Department of Agriculture, Forest Service, Washington DC. URL:
  63. Vacik, H., & Lexer, M. J. (2001). Application of a spatial decision support system in managing the protection forests of Vienna for sustained yield of water resources. Forest Ecology and Management, 143(1–3), 65–76. doi: 10.1016/S0378-1127(00)00506-5.CrossRefGoogle Scholar
  64. Vargas, L., & Zahedi, F. (Eds.) (1993). Special issue. Analytic Hierarchy Process and its applications. Mathematical and Computer Modeling, 17 (4–5), 1–209. doi: 10.1016/0895-7177(93)90169-Y
  65. Vergano, D. (2003). Water shortages will leave world in dire straits. USA Today.
  66. Wolfslehner, B., & Vacik, H. (2011). Mapping indicator models: From intuitive problem structuring to quantified decision-making in sustainable forest management. Ecological Indicators, 11(2), 274–283. doi: 10.1016/j.ecolind.2010.05.004.CrossRefGoogle Scholar
  67. Zaman, M. A., Osman, K. T., & Haque, S. M. S. (2010). Comparative study of some soil properties in forested and deforested areas in Cox’s Bazar and Rangamati Districts, Bangladesh. Journal of Forestry Research, 21(3), 319–322. doi: 10.1007/s11676-010-0077-0.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Shampa Biswas
    • 1
    • 2
  • Harald Vacik
    • 3
  • Mark E. Swanson
    • 2
  • S. M. Sirajul Haque
    • 4
  1. 1.School of Environmental Sciences and ManagementIndependent UniversityDhakaBangladesh
  2. 2.Department of Natural Resource Sciences, College of Agricultural, Human and Natural Resource SciencesWashington State UniversityPullmanUSA
  3. 3.Department of Forest and Soil Sciences, Institute of SilvicultureUniversity of Natural Resources and Life SciencesViennaAustria
  4. 4.Institute of Forestry and Environmental SciencesUniversity of ChittagongChittagongBangladesh

Personalised recommendations