Environmental Monitoring and Assessment

, Volume 184, Issue 4, pp 1865–1878 | Cite as

Bioaccumulation of trace elements in different tissues of three commonly available fish species regarding their gender, gonadosomatic index, and condition factor in a wetland ecosystem

  • Azamalsadat Hosseini Alhashemi
  • Abdolreza Karbassi
  • Bahram Hassanzadeh Kiabi
  • Seyed Masoud Monavari
  • Mohammad Sadegh Sekhavatjou


In the present research, accumulation of Cd, Co, Cr, Cu, Mn, Ni, Pb, V, and Zn were determined in sediments and fillet, liver, kidney, gonads, and gills of three commonly fish species in the largest wetland ecosystem that is located in southwest of Iran; Shadegan wetland. Shadegan is one of the most important wetland that posses various fauna and flora but suffers inputs from agricultural and industrial activities. So, sediment samples and fish species including Barbus grypus, Barbus sharpeyi, and Cyprinus carpio were collected during winter 2009. Results showed that mean concentrations of trace elements (except Ni and Co) were high in liver and gills of B. grypus. Also trace elements had the most accumulation in liver of B. sharpeyi except for Cd (0.26 mg kg − 1 d.w.) and Mn (13.45 mg kg − 1 d.w.) that were high in gills. Beside, kidney is determined as target tissue for Ni and V in B. grypus and for Pb in C. carpio, due to their high concentration. Zn levels in all tissues of C. carpio showed the highest concentrations in comparison to other fish species. Generally, accumulations of most of the studied elements in B. grypus and B. sharpeyi were higher in females than in males, while in fillet and gonads of C. carpio, this trend was inverted. Bioaccumulation factors (BAFs) were determined for different tissues of fish species with respect to elemental concentrations in sediment. BAFs results indicated that Zn, Pb, and Cu have higher BAF than other elements. Also this investigation demonstrated that trace elements have different affinities with condition factor of studied fish species. Gonadosomatic index (GSI) and Pb showed positive correlation together in both B. sharpeyi and B. grypus, respectively, in females and males. Moreover, females of C. carpio showed significantly positive relation of GSI and all studied elements.


Bioaccumulation Heavy metals Target tissue Barbus grypus Barbus sharpeyi Cyprinus carpio 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adjei-Boateng, D., Obirikorang, K. A., & Amisah, S. (2010). Bioaccumulation of heavy metals in the tissue of the clam Galatea paradoxa and sediments from the Volta Estuary, Ghana. International Journal of Environmental Research, 4(3), 533–540.Google Scholar
  2. Alhas, E., Oymak, S. H., & Akin, H. K. (2009). Heavy metal concentrations in two barb, Barbus xanthopterus and Barbus rajanorum mystaceus from Atatürk Dam Lake, Turkey. Environmental Monitoring and Assessment, 148, 11–18.CrossRefGoogle Scholar
  3. Amin, O. A., Comoglio, L. I., & Rodriquez, E. M. (2003). Toxicity of cadmium, lead and zinc to larval stages of Lithodes santolla (Decapoda, Anomura). Bulletin of Environmental Contamination and Toxicology, 71, 527–534.CrossRefGoogle Scholar
  4. Ashraj, W. (2005). Accumulation of heavy metals in kidney and heart tissues of Epinephelus microdon fish from the Arabian Gulf. Environmental Monitoring and Assessment, 101(1–3), 311–316.CrossRefGoogle Scholar
  5. Ayandiran, T. A., Fawole, O. O., Adewoye, S. O., & Ogundiran, M. A. (2009). Bioconcentration of metals in the body muscle and gut of Clarias gariepinus exposed to sublethal concentrations of soap and detergent effluent. Journal of Cell and Animal Biology, 3(8), 113–118.Google Scholar
  6. Bakaç, M., & Kumru, M. N. (2001). Factor analysis in the geochemical studies along the Gediz river, Turkey. Journal of Radioanalytical and Nuclear Chemistry, 249(3), 617–624.CrossRefGoogle Scholar
  7. Batzias, A. F., & Siontorou, C. G. (2008). A new scheme for biomonitoring heavy metal concentrations in semi-natural wetlands. Journal of Hazardous Materials, 158(2–3), 340–358.CrossRefGoogle Scholar
  8. Brumbaugh, W. G., Schmitt, C. J., & May, T. W. (2005). Concentrations of Cadmium, Lead, and Zinc in fish from mining-influenced waters of Northeastern Oklahoma: Sampling of blood, carcass, and liver for aquatic biomonitoring. Archives of Environmental Contamination and Toxicology, 49, 76–88.CrossRefGoogle Scholar
  9. Bu-Olayan, A. H., Al-Hassan, R., Thomas, B. V., & Subrahmanyam, M. N. V. (2001). Impact of trace metals and nutrients levels on phytoplankton from the Kuwait Coast. Environment International, 26, 199–203.CrossRefGoogle Scholar
  10. Burger, J. (2007). A framework and methods for incorporating gender-related issues in wildlife risk assessment: Gender-related differences in metal levels and other contaminants as a case study. Environmental Research, 104, 153–162.CrossRefGoogle Scholar
  11. Canbek, M., Demir, T. A., Uyanoglu, M., Bayramoglu, G., Emiroglu, O., Arslan, N., et al. (2007). Preliminary assessment of heavy metals in water and some Cyprinidae species from the Porsuk River, Turkey. Journal of Applied Biological Sciences, 1(3), 91–95.Google Scholar
  12. Canli, M., & Atli, G. (2003). The relationships between heavy metal (Cd, Cr, Cu, Fe, Pb, Zn) levels and the size of six Mediterranean fish species. Environmental Pollution, 121, 129–136.CrossRefGoogle Scholar
  13. Čelechovská, O., Svobodová, Ž. V., & Macharáèková, B. (2007). Distribution of metals in tissues of the common carp (Cyprinus carpio L.). Acta Veterinaria Brno, 76, S93–S100.CrossRefGoogle Scholar
  14. Chester, R., & Hughes, R. M. (1967). A chemical technique for the separation of ferro-manganese minerals, carbonate minerals and adsorbed trace elements from pelagic sediment. Chemical Geology, 2, 249–262.CrossRefGoogle Scholar
  15. Dural, M., Ziya Lugal Goksu, M., & Ozak, A. A. (2007). Investigation of heavy metal levels in economically important fish species captured from the Tuzla lagoon. Food Chemistry, 102, 415–421.CrossRefGoogle Scholar
  16. Erdoğrul, Ö., & Erbilir, F. (2007). Heavy metal and trace elements in various fish samples from Sır Dam Lake, Kahramanmaraş, Turkey. Environmental Monitoring and Assessment, 130, 373–379.CrossRefGoogle Scholar
  17. Fairbrother, A., Wenstel, R., Sappington, S., & Wood, W. (2007). Framework for metals risk assessment. Ecotoxicology and Environmental Safety, 68, 145–227.CrossRefGoogle Scholar
  18. Farombi, E. O., Adelowo, O. A., & Ajimoko, Y. R. (2007). Biomarkers of oxidative stress and heavy metal levels asindicators of environmental pollution in African cat fish (Clarias gariepinus) from Nigeria Ogun River. International Journal of Environmental Research and Public Health, 4(2), 158–165.CrossRefGoogle Scholar
  19. Feng Li, Y. M., Wen, P., & Zhu, T. (2008). Bioavailability and toxicity of heavy metals in a heavily polluted river, in PRD, China. Bulletin of Environmental Contamination and Toxicology, 81, 90–94.CrossRefGoogle Scholar
  20. Fernandes, C., Fontainhas-Fernandes, A., Peixoto, F., & Salgado, M. A. (2007). Bioaccumulation of heavy metals in Liza saliens from the Esmoriz–Paramos coastal lagoon, Portugal. Ecotoxicology and Environmental Safety, 66, 426–431.CrossRefGoogle Scholar
  21. Griffiths, S. P., Kuhnert, P. M., Fry, G. F., & Manson, F. J. (2008). Temporal and size-related variation in the diet, consumption rate, and daily ration of mackerel tuna (Euthynnus affinis) in neritic waters of eastern Australia. ICES Journal of Marine Science, 66, 720–733.CrossRefGoogle Scholar
  22. Guhathakurta, H., & Kaviraj, A. (2000). Heavy metal concentration in water, sediment, shrimp (Penaeus monodon) and mullet (Liza parsia) in some brackish water ponds of Sunderban, India. Marine Pollution Bulletin, 40, 914–920.CrossRefGoogle Scholar
  23. Hendozko, E., Szefer, P., & Warzocha, J. (2010). Heavy metals in Macoma balthica and extractable metals in sediments from the southern Baltic Sea. Ecotoxicology and Environmental Safety, 73, 152–163.CrossRefGoogle Scholar
  24. Hosseini Alhashemi, A. S., Karbassi, A. R., Hassanzadeh Kiabi, B., Monavari, S. M., Nabavi, S. M. B., & Sekhavatjou, M. S. (2010). Bioaccumulation of trace elements in trophic levels of wetland plants and waterfowl birds. Biological Trace Element Research. doi: 10.1007/s12011-010-8795-x.Google Scholar
  25. Hosseini Alhashemi, A. S., Karbassi, A. R., Hassanzadeh Kiabi, B., Monavari, S. M., & Nabavi, S. M. B. (2011). Accumulation and bioaccessibility of trace elements in wetland sediments. African Joural of Biotechnology, 10(9), 1625–1636.Google Scholar
  26. Karadede, H., & Ünlü, E. (2000). Concentrations of some heavy metals in water, sediment and fish species from the Atatürk Dam Lake (Euphrates), Turkey. Chemosphere, 41, 1371–1376.CrossRefGoogle Scholar
  27. Koca, S., Koca, Y. B., Yildiz, S., & Gürcü, B. (2008). Genotoxic and histopathological effects of water pollution on two fish species, Barbus capito pectoralis and Chondrostoma nasus in the Büyük Menderes River, Turkey. Biological Trace Element Research, 122, 276–291.CrossRefGoogle Scholar
  28. Kojadinovic, J., Potier, M., Corre, M. L., Cosson, R. P., & Bustamante, P. (2007). Bioaccumulation of trace elements in pelagic fish from the Western Indian Ocean. Environmental Pollution, 146(2), 548–566.CrossRefGoogle Scholar
  29. Lombardi, P. E., Peri, S. I., & Verrengia Guerrero, N. R. (2010). Trace metal levels in Prochilodus lineatus collected from the La Plata River, Argentina. Environmental Monitoring and Assessment, 160, 47–59.CrossRefGoogle Scholar
  30. Ma, Z., Cai, Y., Li, B., & Chen, J. (2010). Managing wetland habitats for waterbirds: An international perspective. Wetlands, 30, 15–27.CrossRefGoogle Scholar
  31. Macfarlane, G. R., & Booth, D. J. (2001). Estuarine macro benthic community structure in the Hawkesbury River, Australia: Relationships with sediment physicochemical and anthropogenic parameters. Environmental Monitoring and Assessment, 72, 51–78.CrossRefGoogle Scholar
  32. Mora, S., Fowler, S. W., Wyse, E., & Azemard, S. (2004). Distribution of heavy metals in marine bivalves, fish and coastal sediments in the Gulf and Gulf of Oman. Marine Pollution Bulletin, 49, 410–424.CrossRefGoogle Scholar
  33. Murugesan, A. G., Maheswari, S., & Bagirath, G. (2008). Biosorption of cadmium by live and immobilized cells of Spirulina platensis. International Journal of Environmental Research, 2(3), 307–312.Google Scholar
  34. Ozturk, M., Ozozen, G., Minareci, O., & Minareci, E. (2009). Determination of heavy metals in fish, water and sediments of Avsar dam lake in Turkey. Iranian Journal of Environmental Health Science & Engineering, 6, 73–80.Google Scholar
  35. Papagiannis, I., Kagalou, I., Leonardos, J., Petridis, D., & Kalfakakou, V. (2004). Copper and zinc in four freshwater fish species from Lake Pamvotis (Greece). Environment International, 30, 357–362.CrossRefGoogle Scholar
  36. Peakall, D., & Burger, J. (2003). Methodologies for assessing exposure to metals: Speciation, bioavailability of metals, and ecological host factors. Ecotoxicology and Environmental Safety, 56, 110–121.CrossRefGoogle Scholar
  37. Qiao-qiao, C. H. I., Guang-wei, Z. H. U., & Langdon, A. (2007). Bioaccumulation of heavy metals in fishes from Taihu Lake, China. Journal of Environmental Sciences, 19, 1500–1504.CrossRefGoogle Scholar
  38. Rashed, M. N. (2001). Monitoring of environmental heavy metals if fish from Naser Lake. Environment International, 27, 27–33.CrossRefGoogle Scholar
  39. Regional Organization for the Protection of the Marine Environment (1999). Manual of Oceanographic Observations and Pollutant Analysis Methods (MOOPAM). Third edition Kuwait: chapter III.Google Scholar
  40. Scott, D. A. (1995). A Directory of wetlands in the Middle East. Limbridge: IUCN and IWRB.Google Scholar
  41. Sekhavatjou, M. S., Rostami, A., & Hoseini Alhashemi, A. (2010). Assessment of elemental concentrations in the urban air (case study: Tehran city). Environmental Monitoring and Assessment, 163, 467–476.CrossRefGoogle Scholar
  42. Sekhavatjou, M. S., Hoseini Alhashemi, A., & Rostami, A. (2011). Comparison of trace element concentrations in ambient air of industrial and residential areas in Tehran City. Biological Trace Element Research. doi: 10.1007/s12011-011-9001-5.Google Scholar
  43. Taghinia Hejabi, A., Basavarajappa, H. T., Karbassi, A. R., & Monavari, S. M. (2010). Heavy metal pollution in water and sediments in the Kabini River, Karnataka, India. Environmental monitoring and Assessment. doi: 10.1007/s10661-010-1854-0.Google Scholar
  44. Tekin-Özan, S., & Kir, I. (2008). Seasonal variations of heavy metals in some organs of carp (Cyprinus carpio L., 1758) from Beyşehir Lake (Turkey). Environmental Monitoring and Assessment, 138, 201–206.CrossRefGoogle Scholar
  45. Tessier, A., Campell, P. G. C., & Bisson, M. (1979). Sequential extraction procedure for the speciation of partition of particulate trace metals. Analytical Chemistry, 51, 844–851.CrossRefGoogle Scholar
  46. Thomann, R. V., Mahony, J. D., & Mueller, R. (1995). Steady state model of biota—Sediment accumulation factor for metals in two marine bivalves. Environmental Toxicology and Chemistry, 4, 989–998.Google Scholar
  47. United States Environmental Protection Agency (1994). Sediment sampling. SOP#: 2016.Google Scholar
  48. United States Environmental Protection Agency (2000). Guidance for assessing chemical contaminant data for use in fish advisories. Volume 1: Fish Sampling and Analysis Third Edition EPA 823-B-00-008.Google Scholar
  49. Vahter, M., Åkesson, A., Lidén, C., Ceccatelli, S., & Berglund, M. (2007). Gender differences in the disposition and toxicity of metals. Environmental Research, 104, 85–95.CrossRefGoogle Scholar
  50. Vinodhini, R., & Narayanan, M. (2009). Heavy metal induced histopathological alterations in selected organs of the Cyprinus carpio L. (Common Carp). International Journal of Environmental Research, 3(1), 95–100.Google Scholar
  51. Vosyliene, M. Z., & Jankaite, A. (2006). Effect of heavy metal model mixture on rainbow trout biological parameters. Ekologija, 4, 12–17.Google Scholar
  52. Wang, W. X. (2002). Interactions of trace metals and different marine food chains. Marine Ecology. Progress Series, 243, 295–309.CrossRefGoogle Scholar
  53. West, G. (1990). Methods of assessing ovarian development in fishes—A review. Australian Journal of Marine & Freshwater Research, 41(2), 199–222.CrossRefGoogle Scholar
  54. Yılmaz, A. B., & Doğan, M. (2008). Heavy metals in water and in tissues of himri (Carasobarbus luteus) from Orontes (Asi) River, Turkey. Environmental Monitoring and Assessment, 144, 437–444.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Azamalsadat Hosseini Alhashemi
    • 1
  • Abdolreza Karbassi
    • 2
  • Bahram Hassanzadeh Kiabi
    • 3
  • Seyed Masoud Monavari
    • 1
  • Mohammad Sadegh Sekhavatjou
    • 4
  1. 1.Department of Environmental Science, Graduate School of the Environment and Energy, Science and Research BranchIslamic Azad UniversityTehranIran
  2. 2.Graduate Faculty of EnvironmentUniversity of TehranTehranIran
  3. 3.Department of Marine Biology, Faculty of Biological SciencesShahid Beheshti UniversityTehranIran
  4. 4.Department of Environmental Engineering, Khouzestan Science and Research BranchIslamic Azad UniversityAhvazIran

Personalised recommendations