Environmental Monitoring and Assessment

, Volume 184, Issue 3, pp 1435–1448 | Cite as

Prediction of stream fish assemblages from land use characteristics: implications for cost-effective design of monitoring programmes

  • Esben Astrup Kristensen
  • Annette Baattrup-Pedersen
  • Hans Estrup Andersen


Increasing human impact on stream ecosystems has resulted in a growing need for tools helping managers to develop conservations strategies, and environmental monitoring is crucial for this development. This paper describes the development of models predicting the presence of fish assemblages in lowland streams using solely cost-effective GIS-derived land use variables. Three hundred thirty-five stream sites were separated into two groups based on size. Within each group, fish abundance data and cluster analysis were used to determine the composition of fish assemblages. The occurrence of assemblages was predicted using a dataset containing land use variables at three spatial scales (50 m riparian corridor, 500 m riparian corridor and the entire catchment) supplemented by a dataset on in-stream variables. The overall classification success varied between 66.1–81.1% and was only marginally better when using in-stream variables than when applying only GIS variables. Also, the prediction power of a model combining GIS and in-stream variables was only slightly better than prediction based solely on GIS variables. The possibility of obtaining precise predictions without using costly in-stream variables offers great potential in the design of monitoring programmes as the distribution of monitoring sites along a gradient in ecological quality can be done at a low cost.


Land use GIS Classification trees Stream fish 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allan, J. D. (1995). Stream ecology, structure and function of running waters. London: Chapman and Hall.Google Scholar
  2. Allan, J. D. (2004). Landscapes and riverscapes: The influence of land-use on stream ecosystems. Annual Review of Ecology Evolution and Systematic, 35, 257–284.CrossRefGoogle Scholar
  3. Allan, J. D., Erickson, D. L., & Fay, J. (1997). The influence of catchment land use on stream integrity across multiple spatial scales. Freshwater Biology, 37, 149–161.CrossRefGoogle Scholar
  4. Allan, J. D., & Johnson, L. B. (1997). Catchment-scale analysis of aquatic ecosystems. Freshwater Biology, 37, 107–111.CrossRefGoogle Scholar
  5. Aronson, J., & van Andel, J. (2006). Challenges for ecological theory. In J. van Andel & J. Aronson (Eds.), Restoration ecology. Oxford: Blackwell.Google Scholar
  6. Atkinson, E. J., & Therneau, T. M. (2000). An introduction to recursive partitioning using the rpart routines. Technical report number 61 (p. 52). Rochester: Mayo Foundation.Google Scholar
  7. Baattrup-Pedersen, A., Friberg, N., Pedersen, M. L., Skriver, J., Kronvang, B., & Larsen, S. E. (2004). Anvendelse af Vandrammedirektivet i danske vandløb. Technical Reports from NERI (Vol. 499, p. 161). Silkeborg: National Environmental Research Institute (in Danish).Google Scholar
  8. Baattrup-Pedersen, A., Springe, G., Riis, T., Larsen, S. E., Sand-Jensen, K., & Kjellerup Larsen, L. M. (2008). The search for reference conditions for stream vegetation in northern Europe. Freshwater Biology, 53(9), 1890–1901.CrossRefGoogle Scholar
  9. Bailey, R. C., Reynoldson, T. B., Yates, A. G., Bailey, J., & Linke, S. (2007). Integrating stream bioassessment and landscape ecology as a tool for land use planning. Freshwater Biology, 52, 908–917.CrossRefGoogle Scholar
  10. Begon, M., Townsend, C. R., & Harper, J. L. (2005). From individuals to ecosystems (4th ed.). Oxford: Blackwell.Google Scholar
  11. Cohen, J. (1960). A coefficient of agreement for nominal scales. Educational and Psychological Measurement, 20(1), 37–46.CrossRefGoogle Scholar
  12. Dale Jones, E. B., III, Helfman, G. S., Harper, J. O., & Bolstad, P. V. (1999). Effects of Riparian forest removal on fish assemblages in Southern Appalachian streams. Conservation Biology, 13(6), 1454–1465.CrossRefGoogle Scholar
  13. De’ath, G., & Fabricius, K. E. (2000). Classification and regression trees: A powerful yet simple technique for ecological data analysis. Ecology, 81(11), 3178–3192.CrossRefGoogle Scholar
  14. Diepernik, C. (2003). Fisk og naturkvalitet i vandløb. Ry: WaterFrame (in Danish).Google Scholar
  15. Elith, J., Graham, C. H., Anderson, R. P., Dudik, M., Ferrier, S., Guisan, A., et al. (2006). Novel methods improve prediction of species’ distribution from occurrence data. Ecography, 29, 129–151.CrossRefGoogle Scholar
  16. European Commission (2000). Directive 2000/60/EC of the European parliament and of the Council of 23 October 2000, establishing a Framework for Community Action in the field of Water Policy. Official Journal of the European Communities, L327, 1–72.Google Scholar
  17. Ferrier, S., & Guisan, A. (2006). Spatial modelling of biodiversity at the community level. Journal of Applied Ecology, 43, 393–404.CrossRefGoogle Scholar
  18. Friberg, N., Baattrup-Pedersen, A., Pedersen, M. L., & Skriver, J. (2005). The new Danish stream monitoring programme (NOVANA)—preparing monitoring activities for the water framework directive era. Environmental Monitoring and Assessment, 111, 27–42.CrossRefGoogle Scholar
  19. Frimpong, E. A., Sutton, T. M., Engel, B. A., & Simon, T. P. (2005). Spatial-scale effects on relative importance of physical habitat predictors of stream health. Environmental Management, 36, 899–917.CrossRefGoogle Scholar
  20. Grenouillet, G., Roset, N., Goffaux, D., Breine, J., Simoens, I., de Leeuw, J. J., et al. (2007). Fish assemblages in European Western Highlands and Western Plains: A type-specific approach to assess ecological quality of running waters. Fisheries Management & Ecology, 14, 509–517.CrossRefGoogle Scholar
  21. Guisan, A., & Zimmerman, N. E. (2000). Predictive habitat distribution models in ecology. Ecological Modelling, 135, 147–186.CrossRefGoogle Scholar
  22. Harte, J. (2001). Land use, biodiversity, and ecosystem integrity: The challenge of preserving earth’s life support system. Ecology Law Quarterly, 27, 929–965.Google Scholar
  23. Hershey, A. E., Beaty, S., Fortino, K., Keyse, M., Mou, P. P., O’Brian, W. J., et al. (2006). Effects of landscape factors on fish distribution in arctic Alaskan lakes. Freshwater Biology, 51, 39–55.CrossRefGoogle Scholar
  24. Hobbs, R. J., Yates, S., & Mooney, H. A. (2007). Long-term data reveal complex dynamics in grassland in relation to climate and disturbance. Ecological Monographs, 77, 545–568.CrossRefGoogle Scholar
  25. Johnson, L. B., Richards, C., Host, G. E., & Arthur, J. W. (1997). Landscape influences on water chemistry in Midwestern stream ecosystems. Freshwater Biology, 37, 193–208.CrossRefGoogle Scholar
  26. Joy, M. K., & Death, R. G. (2004). Predictive modelling and spatial mapping of freshwater fish and decapod assemblages using GIS and neural networks. Freshwater Biology, 49, 1036–1052.CrossRefGoogle Scholar
  27. Kennard, M. J., Pusey, B. J., Arthington, A. H., Harch, B. D., & Mackay, S. J. (2006). Development and application of a predictive model of freshwater fish assemblage composition to evaluate river health in eastern Australia. Hydrobiologia, 572, 33–57.CrossRefGoogle Scholar
  28. Kesminas, V., & Virbickas, T. (2000). Application of an adapted index of biotic integrity to rivers of Lithuania. Hydrobiologia, 422(423), 257–270.CrossRefGoogle Scholar
  29. Kristensen, E. A., & Baattrup-Pedersen, A. (2007). Fiskesamfund i relation til vandløbsstørrelse og israndslinien. In J. Bøgestrand (Ed.), Vandløb 2006. NOVANA. Silkeborg: National Environmental Research Institute (in Danish).Google Scholar
  30. Lovett, G. M., Burns, D. A., Driscoll, C. T., Jenkins, J. C., Mitchell, M. J., Rustad, L., et al. (2007). Who needs environmental monitoring? Frontiers in Ecology and the Environment, 5(5), 253–260.CrossRefGoogle Scholar
  31. Matthews, W. J. (1998). Patterns in freshwater fish ecology. New York: Chapman and Hall.CrossRefGoogle Scholar
  32. McIntosh, R. P. (1995). H.A. Gleason’s “individualistic community concept” and theory of animal communities: A continuing controversy. Biological Review, 70, 317–357.CrossRefGoogle Scholar
  33. Moerke, A. H., & Lamberti, G. A. (2006). Scale-dependent influences on water quality, habitat, and fish communities in streams of the Kalamazoo River basin, Michigan (USA). Aquatic Sciences, 68, 193–205.CrossRefGoogle Scholar
  34. Monserud, R. A., & Leemans, R. (1992). Comparing global vegetation maps with the Kappa statistic. Ecological Modelling, 62, 275–293.CrossRefGoogle Scholar
  35. Nielsen, K. (2000). Areal Informations Systemet – AIS. Silkeborg: Danish Ministry of the Environment and the National Environmental Research Institute (in Danish).Google Scholar
  36. Oberdorff, T., & Porcher, J.-P. (1992). Fish assemblage structure in Brittany streams (France). Aquatic Living Resources, 5, 215–223.CrossRefGoogle Scholar
  37. Oberdorff, T., Pont, D., Hugueny, B., & Chessel, D. (2001). A probabilistic model characterizing fish assemblages of French rivers: A framework for environmental assessment. Freshwater Biology, 46, 399–415.CrossRefGoogle Scholar
  38. Olden, J. D., Joy, M. K., & Death, R. G. 2006). Rediscovering the species in community-wide predictive modeling. Ecological Applications, 16(4), 1449–1460.CrossRefGoogle Scholar
  39. Orth, D. J. (1983). Aquatic habitat measurement. In L. A. Nielsen & D. L. Johnson (Eds.), Fisheries techniques (pp. 61–85). Bethesda: American Fisheries Society.Google Scholar
  40. Pedersen, M. L., & Baattrup-Pedersen, A. (2005). Økologisk overvågning i vandløb og på vandløbsnære arealer under NOVANA 2004–2009. 3. udgave (Vol. 21, pp. s140). National Environmental Research Institute.Google Scholar
  41. Ricciardi, A., & Rasmussen, J. B. (1999). Extinction rates of North American freshwater fauna. Conservation Biology, 13, 1220–1222.CrossRefGoogle Scholar
  42. Richards, C., Johnson, L. B., & Host, G. E. (1996). Landscape-scale influences on stream habitats and biota. Canadian Journal of Fisheries and Aquatic Sciences, 53, 295–311.CrossRefGoogle Scholar
  43. Richter, B. D., Braun, D. P., Mendelson, M. A., & Master, L. L. (1997). Threats to imperilled freshwater fauna. Conservation Biology, 11, 1081–1093.CrossRefGoogle Scholar
  44. Rosenfeld, J. (2003). Assessing the habitat requirements of stream fishes: An overview and evaluation of different approaches. Transactions of the American Fisheries Society, 132, 953–968.CrossRefGoogle Scholar
  45. Roy, A. H., Freeman, M. C., Freeman, B. J., Wenge, S. J., Ensign, W. E., & Meyer, J. L. (2006). Importance of riparian forests in urban catchments contingent on sediment and hydrologic regimes. Environmental Management, 37, 523–539.CrossRefGoogle Scholar
  46. Southwood, T. R. E. (1977). Habitat, the templet for ecological strategies? The Journal of Animal Ecology, 46, 337–365.Google Scholar
  47. Spellerberg, I. F. (2005). Monitoring ecological change (2nd ed.). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  48. Steen, P. J., Zorn, T. G., Sellbach, P. W., & Schaeffer, J. S. (2008). Classification tree models for predicting distributions of Michigan stream fish from landscape variables. Transactions of the American Fisheries Society, 137(4), 976–996.CrossRefGoogle Scholar
  49. The Danish Food Industry Agency (2008). http://ferv.fvm.dk/Enkeltbetaling.aspx?ID=20385 2008 (in Danish).
  50. Turner, M. G., Collins, S. L., Lugo, A. E., Magnuson, J. J., Rupp, T. S., & Swanson, F. J. (2003). Disturbance dynamics and ecological responses: The contribution of long-term ecological research. Bioscience, 53, 46–56.CrossRefGoogle Scholar
  51. Usio, N. (2007). Endangered crayfish in northern Japan: Distribution, abundance and microhabitat specificity in relation to stream and riparian environment. Biological Conservation, 134, 517–526.CrossRefGoogle Scholar
  52. Vannote, R. L., Minshall, G. W., Cummins, K. W., & Cushing, C. E. (1980). The river continuum concept. Canadian Journal of Fisheries and Aquatic Sciences, 37, 130–137.CrossRefGoogle Scholar
  53. Venables, W. N., & Ripley, B. D. (2002). Modern applied statistics with S (4th ed.). New York: Springer.Google Scholar
  54. Walters, D. M., Roy, A. H., & Leigh, D. S. (2009). Environmental indicators of macroinvertebrate and fish assemblage integrity in urbanizing watersheds. Ecological Indicators, 9, 1222–1233.CrossRefGoogle Scholar
  55. Wang, L. Z., Lyons, J., Rasmussen, P., Seelbach, P., Simon, T., Wiley, M., et al. (2003). Watershed, reach, and riparian influences on stream fish assemblages in the Northern Lakes and Forest Ecoregion, USA. Canadian Journal of Fisheries and Aquatic Sciences, 60, 491–505.CrossRefGoogle Scholar
  56. Wiley, M. J., Kohler, S. L., & Seelbach, P. (1997). Reconciling landscape and local views of aquatic communities: Lessons from Michigan trout streams. Freshwater Biology, 37, 133–148.CrossRefGoogle Scholar
  57. Williams, J. B., & Poff, N. L. (2006). Informatics software for the ecologist’s toolbox: A basic example. Ecological Informatics, 1, 325–329.CrossRefGoogle Scholar
  58. Zimmerman, G. M., Goetz, H., & Mielke, P. W. (1985). Use of an improved statistical method for group comparisons to study effects of prairie fire. Ecology, 66, 606–611.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Esben Astrup Kristensen
    • 1
  • Annette Baattrup-Pedersen
    • 1
  • Hans Estrup Andersen
    • 1
  1. 1.Department of Freshwater Ecology, National Environmental Research InstituteAarhus UniversitySilkeborgDenmark

Personalised recommendations