Advertisement

Environmental Monitoring and Assessment

, Volume 184, Issue 2, pp 1145–1156 | Cite as

Impact of PAH on biological health parameters of soils of an Indian refinery and adjoining agricultural area—a case study

  • Priyanka Chaudhary
  • Shashi Bala Singh
  • Smita Chaudhry
  • Lata Nain
Article

Abstract

The present study is aimed at analysing and comparing different soil enzymes in soil samples of native contaminated sites of a Mathura refinery and adjoining agricultural land. Enzyme activities are considered as indicators of soil quality and changes in biogeochemical function due to management or perturbations. Soil samples were collected from the premises and nearby area of Mathura refinery, India. Biological health parameters (dehydrogenase, aryl esterase, aryl sulphatase, \(\upbeta \)-glucosidase, alkaline phosphatase, acid phosphatase, lipase, laccase and catalase activity) were estimated in the soil samples. Among all the samples, sewage sludge soil showed maximum activity of enzymes, microbial biomass carbon and most probable number of polycyclic aromatic hydrocarbon (PAH) degraders in soils spiked with three- to four-ring PAHs at 50 ppm. Available phosphorus, potassium and nitrogen was also exceptionally high in this sample, indicating maximum microbial bioconversion due to presence of nutrients stimulating potent PAH-degrading microorganisms.

Keywords

Bio impact MPN PAH Soil enzymes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agarwal, T., Khillare, P. S., Shridhar, V., & Ray, S. (2009). Pattern, sources and toxic potential of PAHs in the agricultural soils of Delhi, India. Journal of Hazardous Material, 163, 1033–1039.CrossRefGoogle Scholar
  2. Anderson, T. H., & Domsch, K. H. (1989). Ratios of microbial biomass carbon to total organic carbon in arable soils. Soil Biology and Biochemistry, 21, 471–479.CrossRefGoogle Scholar
  3. Arun, A., Raja, P. P., Arthi, R., Ananthi, M., Kumar, K. S., & Eyini, M. (2008). Polycyclic aromatic hydrocarbons (PAHs) biodegradation by basidiomycetes fungi, Pseudomonas isolate, and their cocultures: comparative in vivo and in silico approach. Applied Biochemistry and Biotechnology, 151, 132–142.CrossRefGoogle Scholar
  4. Atlas, R. M. (1979). Measurement of hydrocarbon biodegradation potentials and enumeration of hydrocarbon utilizing microorganisms using carbon 14 hydrocarbon spiked crude oil. In J. W. Costerton & R. R. Colwell (Eds.), Native aquatic bacteria: Enumeration, activity, and ecology (pp. 196–204). Philadelphia: American Society for Testing and Materials. ASTM STP 695.CrossRefGoogle Scholar
  5. Bandick, A. K., & Dick, R. P. (1999). Field management effects on soil enzyme activities. Soil Biology and Biochemistry, 31, 1471–1479.CrossRefGoogle Scholar
  6. Bishnoi, K., Sain, U., Kumar, R., Singh, R., & Bishnoi, N. R. (2009). Distribution and biodegradation of PAH in contaminated sites of Hisar. Indian Journal of Experimental Biology, India, 47, 210–217.Google Scholar
  7. Brandt, H. C. A., & Watson, W. P. (2003). Monitoring human occupational and environmental exposures to polycyclic aromatic compounds. The Annals of Occupational Hygiene, 47, 349–378.CrossRefGoogle Scholar
  8. Bushnell, L. D., & Haas, H. F. (1941). The utilization of certain hydrocarbons by microorganisms. Journal of Bacteriology, 41, 653–673.Google Scholar
  9. Casida, L. E., Jr., Klein, D. A., & Santaro, T. (1964). Soil dehydrogenase activity. Soil Science, 98, 371–376.CrossRefGoogle Scholar
  10. Chaudhary, P., Sharma, R., Singh S. B., & Lata (2011). Bioremediation of PAH by Streptomyces sp. Bulletin of Environmental Contamination and Toxicology. doi: 10.1007/s00128-011-0211-5.Google Scholar
  11. Chiou, C. T., McGroddy, S. E., & Kile, D. E. (1998). Partition characteristics of polycyclic aromatic hydrocarbons on soils and sediments. Environmental Science and Technology, 132, 264–269.CrossRefGoogle Scholar
  12. Chrost, R. J. (1991). Environmental control of the synthesis and activity of aquatic microbial ectoenzyme. In R. J. Chrost (Ed.), Microbial enzymes in aquatic environments (pp. 29–59). New York: Springer.CrossRefGoogle Scholar
  13. Chung, M. K., Hu, R., Cheung, K. C., & Wong, M. H. (2007). Pollutants in Hong Kong soils: Polycyclic aromatic hydrocarbons. Chemosphere, 67, 464–473.CrossRefGoogle Scholar
  14. Cochran, W. G. (1950). Estimation of bacterial densities by means of the “Most Probable Number”. Biometrics, 6, 105–116.CrossRefGoogle Scholar
  15. Colwell, R. R. (1979). Enumeration of specific populations by the most-probable-number (MPN) method. In J. W. Costerton & R. R. Colwell (Eds.), Native aquatic bacteria: Enumeration, activity, and ecology (p. 5661). Philadelphia: American Society for Testing and Materials. ASTM STP 695.Google Scholar
  16. Dick, W. A., & Tabatabai, M. A. (1984). Kinetic parameters of phosphatase in soils and organic waste materials. Soil Science, 137, 7–15.CrossRefGoogle Scholar
  17. Dzombak, D. A., & Luthy, R. G. (1984). Estimating adsorption of PAHs on soils. Soil Science, 137, 292–308.CrossRefGoogle Scholar
  18. Fadzil, M. F., Tahir, N. M., Khairul, W. M., & Zin, W. M. (2008). Concentration and distribution of PAH in town of Kota Bharu Kelantan Darul Naim. The Malaysian Journal of Analytical Sciences, 12, 609–618.Google Scholar
  19. Fitzgerald, J. W. (1978). Naturally occurring organosulfur compounds in soil. In J. O. Niriagu (Ed.), Sulfur in the environment, ecological impacts, part II (pp. 391–443). New York: Wiley.Google Scholar
  20. Guan, S. Y., Zhang, D. S., & Zhang, Z. M. (1991). Methods of soil enzyme activities analysis (pp. 263–271). Beijing: Agriculture Press (in Chinese).Google Scholar
  21. Jackson, M. L. (1973). Soil chemical analysis (p. 660) New Delhi: Prentice Hall.Google Scholar
  22. Johnsen, A. R., & Karlson, U. (2005). PAH degradation capacity of soil microbial communities—Does it depend on PAH exposure. Microbiology and Ecology, 50, 488–495.CrossRefGoogle Scholar
  23. Kononova, M. M. (1961). Soil organic matter, its nature, its role in soil formation and soil fertility (p. 325). Oxford: Pergamon.Google Scholar
  24. Kosaric, N. (2001). Biosurfactant application for soil Bioremediation. Food Technology and Biotechnology, 39, 295–304.Google Scholar
  25. Lin, X., Li, X., Sun, T., Li, P., Zhou, Q., Sun, L., et al. (2009). Changes in microbial populations and enzyme activities during bioremediation of oil contaminated soil. Bulletin of Environmental Contamination and Toxicology, 83, 542–547.CrossRefGoogle Scholar
  26. Liu, K., Han, W., Pan, W. P., & Riley, J. T. (2001). Polycyclic aromatic hydrocarbon (PAH) emissions from a coal fired pilot FBC system. Journal of Hazardous Material, 84, 175–188.CrossRefGoogle Scholar
  27. Margesin, R., Walder, G., & Schinner, F. (2000). The impact of hydrocarbon remediation (diesel oil and polycyclic aromatic hydrocarbons) on enzyme activities and microbial properties of soil. Acta Biotechnologica, 20, 313–333.CrossRefGoogle Scholar
  28. Margesin, R., Zimmerbauer, A., & Schinner, F. (1999). Soil lipase activity—a useful indicator of oil biodegradation. Biotechnology Techniques, 13, 859–863.CrossRefGoogle Scholar
  29. Masih, A., & Taneja, A. (2006). Polycyclic aromatic hydrocarbon (PAHs) concentration and related carcinogenic potential in soil at a semi arid region of India. Chemosphere, 65, 449–456.CrossRefGoogle Scholar
  30. McLaren, A. D. (1975). Soil as a system of humus and clay immobilised enzymes. Chemica Scripta, 8, 97–99.Google Scholar
  31. Munoz, C., Guillen, F., Martinez, A. T., & Martinez, M. J. (1997). Induction and characterization of laccase in the lignolytic fungus Pleurotus eryngii. Current Microbiology, 34, 1–5.CrossRefGoogle Scholar
  32. Nunan, N., Morgan, M. A., & Herlihy, M. (1998). Ultraviolet absorbance (280 nm) of compounds released from soil during chloroform fumigation as an estimate of the microbial biomass. Soil Biology and Biochemistry, 30, 1599–1603.CrossRefGoogle Scholar
  33. Packard, T. T. (1971). The measurement of respiratory electron transport activity in marine phytoplankton. Journal of Marine Research, 29, 235–244.Google Scholar
  34. Quastel, J. H. (1946). Soil metabolism, the Royal Institute of Chemistry of Great Britain and Ireland, London. Rostlinna-Vyroba, 37, 289–295.Google Scholar
  35. Raiyani, C. V., & Shah, J. A. (1993). Levels of PAHs in ambient environment of Ahmadabad city. Indian Journal of Environment and Protection, 13, 206–215.Google Scholar
  36. Rawat, M. K., & Sharma, M. (2008). Investigations on polycyclic aromatic hydrocarbons (PAHs) in waste oil at Mathura-Agra, National Highway No.2. Journal of Indian Chemical Society, 85, 539–554.Google Scholar
  37. Ray, S., Killare, P. S., Agarwal, T., & Shridhar, V. (2008). Assessment of PAHs in soil around the International airport in Delhi. Journal of Hazardous Material. India, 156, 9–16.CrossRefGoogle Scholar
  38. Rodriguez, G. G., Phipps, D., Ishiguro, K., & Ridgway, H. F. (1992). Use of a fluorescent redox probe for direct visualization of actively respiring bacteria. Applied and Environmental Microbiology, 58, 1801–1808.Google Scholar
  39. Roubal, G., & Atlas, R. M. (1978). Distribution of hydrocarbon utilizing microorganisms and hydrocarbon biodegradation potential in Alaskan continental shelf area. Applied Environmental Microbiology, 35, 897–905.Google Scholar
  40. Sahu, S. K., Pandit, G. G., & Sharma, S. (2001). Levels of PAHs in ambient air of Mumbai (pp. 279–281). Proceedings of 10th National Symposium on Environment. Mumbai: BARC.Google Scholar
  41. Skujins, J. J., Braal, L., & McLaren, A. D. (1962). Characterization of phosphatase in a terrestrial soil sterilized with an electron beam. Enzymologia, 25, 125–133.Google Scholar
  42. Speir, T. W., & Ross, D. J. (1978). Soil phosphatase and sulfatase. In R. G. Burns (Ed.), Soil enzymes (pp. 198–235). New York: Academic.Google Scholar
  43. Tabatabai, M. A. (1994). Soil enzymes. In R. W. Weaver, S. Angle, P. Bottomley, D. Bezdicek, S. Smith, M. A. Tabatabai, & A. Wollum (Eds.), Methods of soil analysis: Part 2 microbiological and biochemical properties soils (pp. 775–833). Madison, WI 5: Soil Science Society of America, Book Ser.Google Scholar
  44. Tabatabai, M. A., & Bremner, J. M. (1969). Use of p-nitrophenyl phosphate for assay of soil phosphatase activity. Soil Biology and Biochemistry, 1, 301–307.CrossRefGoogle Scholar
  45. Tabatabai, M. A., & Bremner, J. M. (1970). Arylsulfatase activity of soils. Proceedings Soil Science Society of America, 34, 225–229.CrossRefGoogle Scholar
  46. Tyagi, S. K. (2004). Methodology for measurement of polynuclear aromatic hydrocarbon in air particulates: Status of PAH in the urban atmosphere of Delhi. Indian Journal of Air Pollution, 4, 52–64.Google Scholar
  47. Vares, T., Niemenma, O., & Hatakka, A. (1994). Secretion of ligninolytic enzymes and mineralization of 14C-ring-labelled synthetic lignin by three Phlebia tremellosa strains. Applied Environmental Microbiology, 60, 569–575.Google Scholar
  48. Walkley, A., & Black, I. A. (1934). An examination of the Degtjareff method for determining soil organic matter and a prepared modification of the chromic acid titration method. Soil Science, 37, 29–38.CrossRefGoogle Scholar
  49. Wilcke, W. (2000). Polycyclic aromatic hydrocarbons (PAHs) in soil—a review. Journal of Plant Nutrition and Soil Science, 163, 229–248.CrossRefGoogle Scholar
  50. Wong, F., Harnerb, T., Liua, Q. T., & Diamonda, M. L. (2004). Using experimental and forest soils to investigate the uptake of polycyclic aromatic hydrocarbons (PAHs) along an urban–rural gradient. Environmental Pollution, 129, 387–398.CrossRefGoogle Scholar
  51. Wrenn, B. A., & Venosa, A. D. (1996). Selective enumeration of aromatic and aliphatic hydrocarbon degrading bacteria by most probable number method. Candian Journal of Microbiology, 42, 252–258.CrossRefGoogle Scholar
  52. Zornoza, R., Landi, L., Nannipieri, P., & Renella, G. (2009). A protocol for the assay of arylesterase activity in soil. Soil Biology and Biochemistry, 41, 659–662.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Priyanka Chaudhary
    • 1
  • Shashi Bala Singh
    • 2
  • Smita Chaudhry
    • 3
  • Lata Nain
    • 1
  1. 1.Division of MicrobiologyIndian Agricultural Research InstituteNew DelhiIndia
  2. 2.Division of Agricultural ChemicalsIndian Agricultural Research InstituteNew DelhiIndia
  3. 3.Institute of Environmental StudiesKurukshetra UniversityKurukshetraIndia

Personalised recommendations