Environmental Monitoring and Assessment

, Volume 184, Issue 2, pp 607–624 | Cite as

Slurry wall containment performance: monitoring and modeling of unsaturated and saturated flow

  • Daniele Pedretti
  • Marco Masetti
  • Tomaso Marangoni
  • Giovanni Pietro Beretta


A specific 2-year program to monitor and test both the vadose zone and the saturated zone, coupled with a numerical analysis, was performed to evaluate the overall performance of slurry wall systems for containment of contaminated areas. Despite local physical confinement (slurry walls keyed into an average 2-m-thick aquitard), for at least two decades, high concentrations of chlorinated solvents (up to 110 mg l − 1) have been observed in aquifers that supply drinking water close to the city of Milan (Italy). Results of monitoring and in situ tests have been used to perform an unsaturated-saturated numerical model. These results yielded the necessary quantitative information to be used both for the determination of the hydraulic properties of the different media in the area and for the calibration and validation of the numerical model. Backfill material in the shallower part of the investigated aquifer dramatically affects the natural recharge of the encapsulated area. A transient simulation from wet to drought periods highlights a change in the ratio between leakages from lateral barriers that support a specific scenario of water loss through the containment system. The combination of monitoring and modelling allows a reliable estimate of the overall performance of the physical confinement to be made without using any invasive techniques on slurry wall.


Slurry wall Groundwater monitoring Numerical modeling Leakage Milan (Italy) 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alberti, L., Brogioli, G., Formentin, G., Marangoni, T., & Masetti, M. (2007). Experimental studies and numerical modeling of surface water–groundwater interaction in a semi-disconnected system. In XXXV IAH congress, groundwater and ecosystems, Lisbon, Portugal.Google Scholar
  2. Anderson, M. P., & Woessner, W. W. (1992). Applied groundwater modeling: Simulation of flow and advective transport. San Diego: Academic.Google Scholar
  3. Bayer, P., Finkel, M., & Teutsch, G. (2004). Hydraulic performance of a combination of pump-and-treat and physical barrier systems for contaminant plume management. Ground Water, 42(6), 856–867.CrossRefGoogle Scholar
  4. Benson, C. H. (2002). Containment systems: Lessons learned from north american failures. In Environmental geotechnics (4th ICEG), Swets and Zeitlinger, Lisse, 1095–1112.Google Scholar
  5. Beretta, G. P., Bianchi, M., & Pellegrini, R. (2003). Linee guida per la verifica ed il collaudo delle barriere impermeabili per la messa in sicurezza di siti contaminati. Technical report, Provincia di Milano, Milan (in Italian).Google Scholar
  6. Bolster, D., Barahona-Palomo, M., Dentz, M., Fernàndez Garcia, D., Sanchez-Vila, X., Trinchero, P., et al. (2009). Probabilistic risk assessment applied to contamination scenarios in porous media. Water Resources Research, 45, W06413. doi: 10.1029/2008WR007551.CrossRefGoogle Scholar
  7. Brandelik, A., & Huebner, C. (2003). Moisture monitoring in waste disposal surface barriers. Environmental Monitoring and Assessment, 84, 61–70.CrossRefGoogle Scholar
  8. Britton, J. P., Filz, G. M., & Herring, W. E. (2004). Measuring the hydraulic conductivity of soil-bentonite backfill. Journal of Geotechnical and Geoenvironmental Engineering (ASCE), 130(12), 1250–1258.CrossRefGoogle Scholar
  9. Candelaria, L. M., & Matsumoto, M. R. (2000). Effects of NAPL contaminants on the permeability of a soil-bentonite slurry wall material. Transport in Porous Media, 38, 43–56.CrossRefGoogle Scholar
  10. Chen, D. W., Moeti, L., Carsel, R. F., & Vona, B. (1999). Assessment and prediction of contaminant transport and migration at a Florida superfund site. Environmental Monitoring and Assessment, 57, 291–299.CrossRefGoogle Scholar
  11. Choi, H., & Daniel, D. E. (2006). Slug test analysis in vertical cutoff walls. I: Analysis methods. Journal of Geotechnical and Geoenvironmental Engineering (ASCE), 132(4), 429–438.CrossRefGoogle Scholar
  12. D’Appolonia, D. J. (1980). Soil-bentonite slurry trench cutoffs. Journal of Geotechnical and Geoenvironmental Engineering (ASCE), 106(4), 399–417.Google Scholar
  13. de Barros, F. P. J., Rubin, Y., & Maxwell, R. M. (2009). The concept of comparative information yield curves and their application to risk-based site characterization. Water Resources Research, 45, W06401.CrossRefGoogle Scholar
  14. ENI-AGIP (2002). Geologia degli acquiferi padani della Regione L ombardia. Regione-Lombardia—ENI Divisione AGIP.Google Scholar
  15. Evans, J. C. (1993). Vertical cutoff walls. Geotechnical practice for waste disposal (Chapter 17). New York: Chapman & Hall.Google Scholar
  16. Filz, G. M., & Mitchell, J. K. (1995). Design, construction, and performance of soil- and cement-based vertical barriers. In R. R. Rumer, & J. K. Mitchell (Eds.), International containment technology conference (p. 63). Baltimore: US DoE, US EPA, and Dupont Company.Google Scholar
  17. GEO-SLOPE International Ltd. 2002 (2006). SEEP/W for finite elements seepage analysis version 5 user’s guide, Calgary.Google Scholar
  18. Green, R. E., & Corey, J. C. (1971). Calculation of hydraulic conductivity: A further evaluation of some predictive methods1. Soil Science Society of America Journal, 35(5), 3–8.CrossRefGoogle Scholar
  19. Gupta, S. C., & Larson, W. E. (1979). Estimating soil water retention characteristics from particle size distribution, organic matter percent and bulk density. Water Resources Research, 15, 1633–1635.CrossRefGoogle Scholar
  20. Hajnal, I., Marton, J., & Regele, Z. (1984). Construction of diaphragm walls. New York: Wiley.Google Scholar
  21. Hudak, P. F., & Loaiciga, H. A. (1999). Conjunctive vadose and saturated zone monitoring for subsurface contamination. Environmental Monitoring and Assessment, 59, 15–29.CrossRefGoogle Scholar
  22. Inyang, H. (2004). Modeling the long-term performance of waste containment systems. Environmental Science & Technology, 38(17), 328–334.CrossRefGoogle Scholar
  23. Inyang, H. I., & Tomassoni, G. (1992). Indexing of long-term effectiveness of waste containment systems for a regulatory impact analysis (p. 29). Technical report, a technical guidance document, Office of Solid Waste, US EPA, Washington.Google Scholar
  24. Manassero, M. (1994). Hydraulic conductivity assessment of slurry wall using piezocone test. Journal of Geotechnical and Geoenvironmental Engineering (ASCE), 120(10), 1725–1746.Google Scholar
  25. Manassero, M., Fratalocchi, E., Pasqualini, E., Spanna, C., & Verga, F. (1995). Containment with vertical cutoff walls. In Y. B. Acar, & D. E. Daniel (Eds.), GeoEnvironment 2000, GSP no. 46 (pp. 1142–1172). New Orleans: ASCE.Google Scholar
  26. Nash, K. L. (1974). Diaphragm wall construction techniques. Journal of the Construction Division (ASCE), 100(4), 605–620.Google Scholar
  27. Paul, D. B., Davidson, R. R., & Cavalli, N. J. (1992). Slurry walls: Design, construction and quality control. In ASTM STO 1129. Philadephia: American Society for Testing and MaterialGoogle Scholar
  28. Pedretti, D., Masetti, M., & Francioli, A. (2009). Geostatistical techniques for DNAPL contamination assessment in polluted aquifers. The case of the former Chimica Bianchi facility in the Milan-Rho district. Rendiconti online Soc. Geol. It., 2(1–3).Google Scholar
  29. Rolle, E., Beretta, G. P., Majone, M., Pedretti, D., Petrangeli-Papini, M., & Raffaelli, L. (2009). Analisi delle alternative tecnologiche per il contenimento della contaminazione di acque sotterranee. In Seiminario sulla reindustrializzazione di siti inquinati e tecnologie di intervento sulle acque sotterranee sui sedimenti. Rome: Italian Ministry od Economic Development.Google Scholar
  30. Ryan, C. R. (1987). Vertical barrier in soil for pollution containment. Geotechnical practice for waste disposal (pp. 182–204). New York: ASCE.Google Scholar
  31. Ryan, C. R. (1994). Slurry cutoff walls: Applications in the control of hazardous wastes, hydraulic barriers in soil and rock. In A. I. Johnson, R. K. Frobel, N. J. Cavalli, & C. B. Pettersson (Eds.), STP 874 (pp. 9–23). Denver: ASTM.Google Scholar
  32. Ryan, C. R., & Day, S. R. (2003). Soil-bentonite slurry wall specifications. In Pan American conference on soils mechanics & geotechnical engineering. Cambridge: Geo-Institute and MIT.Google Scholar
  33. Tartakovsky, D. M., & Winter, C. L. (2008). Uncertain future of hydrogeology. ASCE Journal of Hydrologic Engineering, 13(1), 37–39.CrossRefGoogle Scholar
  34. United States Environmental Protection Agency (EPA) (1998). Evaluation of subsurface engineered barriers at waste sites. EPA 542-R-98-005, 148 pp.Google Scholar
  35. Winter, C. L., & Tartakovsky, D. M. (2008). A reduced complexity model for probabilistic risk assessment of groundwater contamination. Water Resources Research, 44(1), W06501.CrossRefGoogle Scholar
  36. Xanthakos, P. P. (1994). Slurry walls as structural systems (2nd ed.). New York: McGraw-Hill.Google Scholar
  37. Zheng, C., & Bennett, G. D. (1997). Applied contaminant transport modeling (2nd ed.). New York: Wiley.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Daniele Pedretti
    • 1
  • Marco Masetti
    • 2
  • Tomaso Marangoni
    • 2
  • Giovanni Pietro Beretta
    • 2
  1. 1.GHS, Dept. Geotechnical Engineering and GeosciencesUniversitat Politecnica de Catalunya—BarcelonaTechBarcelonaSpain
  2. 2.Dipartimento di Scienze della Terra ‘A. Desio’Università degli Studi di MilanoMilanItaly

Personalised recommendations