Advertisement

Environmental Monitoring and Assessment

, Volume 184, Issue 1, pp 549–559 | Cite as

Assessment of phenanthrene bioavailability in aged and unaged soils by mild extraction

  • Muhammad Imran Khan
  • Sardar Alam Cheema
  • Chaofeng Shen
  • Congkai Zhang
  • Xianjin Tang
  • Jiyan Shi
  • Xincai Chen
  • Joonhong Park
  • Yingxu Chen
Article

Abstract

It has become apparent that the threat of an organic pollutant in soil is directly related to its bioavailable fraction and that the use of total contaminant concentrations as a measure of potential contaminant exposure to plants or soil organisms is inappropriate. In light of this, non-exhaustive extraction techniques are being investigated to assess their appropriateness in determining bioavailability. To find a suitable and rapid extraction method to predict phenanthrene bioavailability, multiple extraction techniques (i.e., mild hydroxypropyl-β-cyclodextrin (HPCD) and organic solvents extraction) were investigated in soil spiked to a range of phenanthrene levels (i.e., 1.12, 8.52, 73, 136, and 335 μg g − 1 dry soil). The bioaccumulation of phenanthrene in earthworm (Eisenia fetida) was used as the reference system for bioavailability. Correlation results for phenanthrene suggested that mild HPCD extraction was a better method to predict bioavailability of phenanthrene in soil compared with organic solvents extraction. Aged (i.e., 150 days) and fresh (i.e., 0 day) soil samples were used to evaluate the extraction efficiency and the effect of soil contact time on the availability of phenanthrene. The percentage of phenanthrene accumulated by earthworms and percent recoveries by mild extractants changed significantly with aging time. Thus, aging significantly reduced the earthworm uptake and chemical extractability of phenanthrene. In general, among organic extractants, methanol showed recoveries comparable to those of mild HPCD for both aged and unaged soil matrices. Hence, this extractant can be suitable after HPCD to evaluate risk of contaminated soils.

Keywords

Accumulation Aging Bioavailability HPCD Mild extraction PAHs 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alexander, M. (2000). Aging, bioavailability, and overestimation of risk from environmental pollutants. Environmental Science & Technology, 34, 4259–4265.CrossRefGoogle Scholar
  2. Allan, I. J., Semple, K. T., Hare, R., & Reid, B. J. (2006). Prediction of mono- and polycyclic aromatic hydrocarbon degradation in spiked soils using cyclodextrin extraction. Environmental Pollution, 144, 562–571.CrossRefGoogle Scholar
  3. Barriuso, E., Benoit, P., & Dubus, I. G. (2008). Formation of pesticide nonextractable (bound) residues in soil: Magnitude, controlling factors and reversibility. Environmental Science & Technology, 42, 1845–1854.CrossRefGoogle Scholar
  4. Barthe, M., & Pelletier, E. (2007). Comparing bulk extraction methods for chemically available polycyclic aromatic hydrocarbons with bioaccumulation in worms. Environmental Chemistry, 4, 271–283.CrossRefGoogle Scholar
  5. Bergknut, M., Sehlin, E., Lundstedt, S., Andersson, P. L., Haglund, P., & Tysklind, M. (2007). Comparison of techniques for estimating PAH bioavailability: Uptake in Eisenia foetida, passive samplers and leaching using various solvents and additives. Environmental Pollution, 145, 154–160.CrossRefGoogle Scholar
  6. Cheema, S. A., Khan, M. I., Shen, C. F., Zhang, C. K., Tang, X. J., Chen, L., et al. (2010). Degradation of phenanthrene and pyrene in spiked soils by single and combined plants cultivation. Journal of Hazardous Materials, 60, 107–115.Google Scholar
  7. Cuypers, C., Pancras, T., Grotenhuis, T., & Rulkens, W. (2002). The estimation of PAH bioavailability in contaminated sediments using hydroxypropyl-beta-cyclodextrin and triton x-100 extraction techniques. Chemosphere, 46, 1235–1245.CrossRefGoogle Scholar
  8. Doick, K. J., Clasper, P. J., Urmann, K., & Semple, K. T. (2006). Further validation of the HPCD-technique for the evaluation of PAH microbial availability in soil. Environmental Pollution, 144, 345–354.CrossRefGoogle Scholar
  9. Dupuy, N., Barbry, D., Bria, M., Marquis, S., Vrielynck, L., & Kister, J. (2005). 1H NMR study of inclusion compounds of phenylurea derivatives in [beta]-cyclodextrin. Spectrochimica Acta. Part A: Molecular and Biomolecular Spectroscopy, 61, 1051–1057.CrossRefGoogle Scholar
  10. Edwards, C. A. (2004). The importance of earthworms as key representatives of the soil fauna. In C. A. Edwards (Ed.), Earthworm ecology (2nd ed., pp. 3–11). Boca Raton: CRC.CrossRefGoogle Scholar
  11. Frederick, K. A., & Babish, J. G. (1982). Evaluation of mutagenicity and other adverse effects of occupational exposure to sodium azide. Regulatory Toxicology and Pharmacology, 2, 308–322.CrossRefGoogle Scholar
  12. Gevao, B., Mordaunt, C., Semple, K. T., Piearce, T. G., & Jones, K. C. (2001). Bioavailability of nonextractable (bound) pesticide residues to earthworms. Environmental Science & Technology, 35, 501–507.CrossRefGoogle Scholar
  13. Gomez-Eyles, J. L., Collins, C. D., & Hodson, M. E. (2010). Relative proportions of polycyclic aromatic hydrocarbons differ between accumulation bioassays and chemical methods to predict bioavailability. Environmental Pollution, 158, 278–284.CrossRefGoogle Scholar
  14. Hartnik, T., Jensen, J., & Hermens, J. L. M. (2008). Nonexhaustive betacyclodextrin extraction as a chemical tool to estimate bioavailability of hydrophobic pesticides for earthworms. Environmental Science & Technology, 42, 8419–8425.CrossRefGoogle Scholar
  15. Hickman, Z. A., Swindell, A. L., Allan, I. J., Rhodes, A. H., Hare, R., Semple, K. T., et al. (2008). Assessing biodegradation potential of PAHs in complex multi contaminant matrices. Environmental Pollution, 156, 1041–1045.CrossRefGoogle Scholar
  16. Hickman, Z. A., & Reid, B. J. (2005). Towards a more appropriate water based extraction for the assessment of organic contaminant availability. Environmental Pollution, 138, 299–306.CrossRefGoogle Scholar
  17. Hua, G., Broderick, J., Semple, K. T., Killham, K., & Singleton, I. (2007). Rapid quantification of polycyclic aromatic hydrocarbons in hydroxypropyl-β-cyclodextrin (HPCD) soil extracts by synchronous fluorescence spectroscopy (SFS). Environmental Pollution, 148, 176–181.CrossRefGoogle Scholar
  18. Jager, T., van der Wal, L., Fleuren, R. H. L. J., Barendregt, A., & Hermens, J. L. M. (2005). Bioaccumulation of organic chemicals in contaminated soils: Evaluation of bioassays with earthworms. Environmental Science & Technology, 39, 293–298.CrossRefGoogle Scholar
  19. Jian, Y., Wang, L., Peter, P. F., & Yu, H. T. (2004). Photomutagenicity of 16 polycyclic aromatic hydrocarbons from the US EPA priority pollutant list. Mutation Research, 557, 99–108.Google Scholar
  20. Khan, M. I., Cheema, S. A., Shen, C. F., Zhang, C. K., Tang, X. J., Malik, Z., et al. (2011). Assessment of pyrene bioavailability in soil by mild hydroxypropyl-β-cyclodextrin extraction. Archives of Environmental Contamination and Toxicology, 60, 107–115.CrossRefGoogle Scholar
  21. Lanno, R., Wells, J., Conder, J., Bradham, K., & Basta, N. (2004). The bioavailability of chemicals in soil for earthworms. Ecotoxicology and Environmental Safety, 57, 39–47.CrossRefGoogle Scholar
  22. Liste, H.-H., & Alexander, M. (2002). Butanol extraction to predict bioavailability of PAHs in soil. Chemosphere, 46, 1011–1017.CrossRefGoogle Scholar
  23. Parrish, Z. D., White, J. C., Isleyen, M., Gent, M. P. N., Berger, W. I., Eitzer, B. D., et al. (2006). Accumulation of weathered polycyclic aromatic hydrocarbons (PAHs) by plant and earthworm species. Chemosphere, 64, 609–618.CrossRefGoogle Scholar
  24. Papadopoulos, A., Paton, G. I., Reid, B. J., & Semple, K. T. (2007). Prediction of PAH biodegradation in field contaminated soils using a cyclodextrin extraction technique. Journal of Environmental Monitoring, 9, 516–522.CrossRefGoogle Scholar
  25. Puglisi, E., Cappa, F., Fragoulis, G., Trevisan, M., & Del Re, A. M. A. (2007). Bioavailability and degradation of phenanthrene in compost amended soils. Chemosphere, 67, 548–556.CrossRefGoogle Scholar
  26. Reid, B. J., Jones, K. C., & Semple, K. T. (2000a). Bioavailability of persistent organic contaminants in soils and sediments; a perspective on mechanisms, consequences and means of assessment. Environmental Pollution, 108, 103–112.CrossRefGoogle Scholar
  27. Reid, B. J., Stokes, J. D., Jones, K. C., & Semple, K. T. (2000b). Nonexhaustive cyclodextrin-based extraction technique for the evaluation of PAH bioavailability. Environmental Science & Technology, 34, 3174–3179.CrossRefGoogle Scholar
  28. Reid, B. J., Stokes, J. D., Jones, K. C., & Semple, K. T. (2004). Influence of hydroxypropyl-beta-cyclodextrin on the extraction and biodegradation of phenanthrene in soil. Environmental Toxicology and Chemistry, 23, 550–556.CrossRefGoogle Scholar
  29. Stokes, J. D., Wilkinson, A., Reid, B. J., Jones, K. C., & Semple, K. T. (2005). Prediction of PAH biodegradation in contaminated soils using an aqueous hydroxypropyl-beta-cyclodextrin extraction technique. Environmental Toxicology and Chemistry, 24, 1325–1330.CrossRefGoogle Scholar
  30. Sun, H. W., & Li, J. G. (2005). Availability of pyrene in unaged and aged soils to earthworm uptake, butanol extraction and SFE. Water, Air, and Soil Pollution, 166, 353–365.CrossRefGoogle Scholar
  31. Swindell, A. L., & Reid, B. J. (2006). Comparison of selected non-exhaustive extraction techniques to assess PAH availability in dissimilar soils. Chemosphere, 62, 1126–1134.CrossRefGoogle Scholar
  32. Tang, X. J., Shen, C. F., Chen, L., Xiao, X., Wu, J. Y., Khan, M. I., et al. (2010). Inorganic and organic pollution in agricultural soil from an emerging e-waste recycling town in Taizhou area, China. Jounal of Soils and Sediments, 10, 895–906.CrossRefGoogle Scholar
  33. Wang, Z., Chen, J. W., Yang, P., Qiao, X. L., & Tian, F. L. (2007). Polycyclic aromatic hydrocarbons in Dalian soils: Distribution and toxicity assessment. Journal of Environmental Monitoring, 9, 199–204.CrossRefGoogle Scholar
  34. Wong, F., & Bidleman, T. F. (2010). Hydroxypropyl-b-cyclodextrin as nonexhaustive extractant for organochlorine pesticides and polychlorinated biphenyls in muck soil. Environmental Pollution, 158, 1303–1310.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Muhammad Imran Khan
    • 1
    • 2
    • 3
  • Sardar Alam Cheema
    • 1
    • 2
  • Chaofeng Shen
    • 1
  • Congkai Zhang
    • 1
  • Xianjin Tang
    • 1
  • Jiyan Shi
    • 1
  • Xincai Chen
    • 1
  • Joonhong Park
    • 3
  • Yingxu Chen
    • 1
  1. 1.Institute of Environmental Science and TechnologyZhejiang UniversityHangzhouPeople’s Republic of China
  2. 2.Department of AgronomyUniversity of AgricultureFaisalabadPakistan
  3. 3.Department of Civil and Environmental Engineering, College of EngineeringYonsei UniversitySeoulRepublic of Korea

Personalised recommendations