Advertisement

Environmental Monitoring and Assessment

, Volume 184, Issue 1, pp 229–238 | Cite as

Rinodina sophodes (Ach.) Massal.: a bioaccumulator of polycyclic aromatic hydrocarbons (PAHs) in Kanpur City, India

  • Satya
  • Dalip K. Upreti
  • D. K. Patel
Article

Abstract

The aim of this study is to determine the possibility of using Rinodina sophodes (Ach.) Massal., a crustose lichen as polycyclic aromatic hydrocarbons (PAHs) bioaccumulator for evaluation of atmospheric pollution in tropical areas of India, where few species of lichens are able to grow. PAHs were identified, quantified and compared to evaluate the potential utility of R. sophodes. The limit of detection for different PAHs was found to be 0.008–0.050 μg g − 1. The total PAHs in different sites were ranged between 0.189 ± 0.029 and 0.494 ± 0.105 μg g − 1. The major sources of PAHs were combustion of organic materials, traffic and vehicular exhaust (diesel and gasoline engine). Significantly higher concentration of acenaphthylene and phenanthrene indicates road traffic as major source of PAH pollution in the city. Two-way ANOVA also confirms that all PAHs content showed significant differences between all sampling sites (P 1%). This study establishes the utility of R. sophodes in monitoring the PAHs accumulation potentiality for development of effective tool and explores the most potential traits resistant to the hazardous environmental conditions in the tropical regions of north India, where no such other effective way of biomonitoring is known so far.

Keywords

Rinodina sophodes PAHs Bioaccumulation Traffic level Kanpur City India 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Augusto, S. C., Máguas, J., Matos, M. J., Pereira, A., Soares, C., & Branquinho. (2009). Spatial modeling of PAHs in lichens for fingerprinting of multisource atmospheric pollution. Science of the Total Environment, 43, 7762–7769.Google Scholar
  2. Baumard, P., Budzinski, H., & Garrigue, P. (1998). Polycyclic aromatic hydrocarbons in sediments and mussels of the western Mediterranean sea. Environmental Toxicology Chemistry, 17, 765–776.CrossRefGoogle Scholar
  3. Blasco, M., Domeno, C., & Nerín, C. (2006). Use of lichens as pollution biomonitors in remote areas: Comparison of PAHs extracted from lichens and atmospheric particles sampled in and around the somport tunnel (Pyrenees). Science of the Total Environment, 40, 6384–6391.Google Scholar
  4. Boström, C. E., Gerde, P., Hanberg, A., Jernström, B., Johansson, C., Kyrklund, T., et al. (2002). Cancer risk assessment, indicators, and guidelines for polycyclic aromatic hydrocarbons in the ambient air. Environmental Health Perspectives, 110, 451–488.CrossRefGoogle Scholar
  5. Budzenski, H., Jones, I., Bellocq, J., Pierad, C., & Garrigues, P. (1997). Evaluation of sediment contamination by polycyclic aromatic hydrocarbons in the Gironde estuary. Marine Chemistry, 58, 85–97.CrossRefGoogle Scholar
  6. Caricchia, A. M., Chiavarini, S., & Pezza, M. (1999). Polycyclic aromatic hydrocarbons in the urban atmospheric particulate matter in the city of Naples (Italy). Atmospheric Environment, 33, 3731–3738.CrossRefGoogle Scholar
  7. Dahle, S., Savinov, V. M., Matishov, G. G., Evenset, A., & Naes, K. (2003). Polycyclic aromatic hydrocarbons (PAHs) in bottom sediments of the Kara Sea shelf, Gulf of Ob and Yenisei Bay. Science of the Total Environment, 306, 57–71.CrossRefGoogle Scholar
  8. Dejean, S., Raynaud, C., Meybeck, M., Della Massa, J. P., & Simon, V. (2009). Polycyclic aromatic hydrocarbons (PAHs) in atmospheric urban area: monitoring on various types of sites. Environmental Monitoring and Assessment, 148, 27–37.CrossRefGoogle Scholar
  9. Glick, B. R. (2003). Phytoremediation: Synergistic use of plants and bacteria to clean up the environment. Biotechnology Advance, 21, 383–393.CrossRefGoogle Scholar
  10. Gomez, K. A., & Gomez, A. A. (1984). Statistical procedure for agricultural research. New York: Wiley.Google Scholar
  11. Grimmer, G., Brune, H., Deutsch-Wenzel, R. P., Dettbarn, G., & Misfeld, J. (1984). Lichens as polycyclic aromatic hydrocarbon bioaccumulators used in atmospheric pollution studies. Journal of National Cancer Institute, 72, 185–90.Google Scholar
  12. Grimmer, G., Brune, H., Deutch-Wenzel, R. P., Naujack, K.-W., Misfeld, J., & Timm, J. (1983). On the contribution of polycyclic aromatic hydrocarbons to the carcinogenic impact of automobile exhaust condensate evaluated by local application onto mouse skin. Cancer Letter, 21, 105–113.CrossRefGoogle Scholar
  13. Guidotti, M., Stella, D., Owczarek, M., DeMarco, A., & De Simone, C. (2003). Lichens as polycyclic aromatic hydrocarbon bioaccumulators used in atmospheric pollution studies. Journal of Chromatography, 985, 185–90.CrossRefGoogle Scholar
  14. Huber, W. (2003). Basic calculations about the limit of detection and its optimal determination. Accred Quality Assurance, 8, 213–217.Google Scholar
  15. Khalili, N., Scheff, P., & Holsen, T. (1995). PAH source fingerprints for coke ovens, diesel and, gasoline engines, highway tunnels, and wood combustion emissions. Atmospheric Environment, 29, 533–542.CrossRefGoogle Scholar
  16. Kirchstetter, T. W., Singer, B. C., Harley, R. A., Kendall, G. R., & Chan, W. (1996). Impact of oxygenated gasoline use on California light-duty vehicle emissions. Environmental Science Technology, 30, 661–670.CrossRefGoogle Scholar
  17. Ma, L. L., Chu, S. G., Wang, X. T., Cheng, H. X., & Lin, X. Xu. (2005). Polycyclic aromatic hydrocarbons in the surface soils from outskirts of Beijing, China. Chemosphere, 58, 1355–1363.CrossRefGoogle Scholar
  18. Marr, L. C., Dzepina, K., Jimenez, J. L., Reisen, F., Bethel, H. L., Arey, J., et al. (2005). Sources and transformations of particle-bound polycyclic aromatic hydrocarbons in Mexico City. Atmospheric Chemistry Physics Discussion, 5, 12741–12773.CrossRefGoogle Scholar
  19. Marr, L. C., Kirchstetter, T. W., Harley, R. A., Miguel, A. H., Hering, S. V., & Hammond, S. K. (1999). Characterization of polycyclic aromatic hydrocarbons in motor vehicle fuels and exhaust emissions. Environmental Science Technology, 33, 3091–3099.CrossRefGoogle Scholar
  20. Migaszewski, Z. M., Galuszka, A., & Paslawski, P. (2002). Polynuclear aromatic hydrocarbons, phenols, and trace metals in selected soil profiles and plant bioindicators in the Holy Cross Mountains, South-Central Poland. Environmental International, 28, 303–313.CrossRefGoogle Scholar
  21. Naeth, M. A., & Wilkinson, S. R. (2008). Lichens as biomonitors of air quality around a diamond mine, Northwest Territories, Canada. Journal of Environmental Quality, 37, 1675–1684.CrossRefGoogle Scholar
  22. Pandey, P. K., Patel, K. S., & Lenicek, J. (1999). Polycyclic aromatic hydrocarbons: Need for assesssment of health risks in India? Study of an urban-industrial location in India. Environmental Monitoring and Assessment, 59, 287–319.CrossRefGoogle Scholar
  23. Park, S. S., Kim, Y. J., & Kang, C. H. (2002). Atmospheric polycyclic aromatic hydrocarbons in Seoul, Korea. Atmospheric Environment, 36, 2917–2924.CrossRefGoogle Scholar
  24. Raskin, R. D., & Smith, D. E. (1997). Salt, Phytoremediation of metals: Using plants to remove pollutants from the environment. Current Opinion Biotechnology, 8, 221–226.CrossRefGoogle Scholar
  25. Satya, & Upreti, D. K. (2009). Correlation among Carbon, Nitrogen, Sulphur and physiological parameters of Rinodina sophodes in Kanpur City, India. Journal of Hazardous Materials, 163, 1088–1092.CrossRefGoogle Scholar
  26. Saxena, S. (2004). Lichen flora of Lucknow district with reference to air pollution studies in the area (pp. 1–131). Ph.D. thesis, University of Lucknow (submitted to).Google Scholar
  27. Shukla, V., & Upreti, D. K. (2007). Physiological response of the lichen Phaeophyscia hispidula (Ach.) Essl., to the urban environment of Pauri and Srinagar (Garhwal), Himalayas, India. Environmental Pollution, 150, 295–299. doi: 10.1016/j.envpol.2007.02.010.CrossRefGoogle Scholar
  28. Shukla, V., & Upreti, D. K. (2008). Effect of metallic pollutants on the physiology of lichen, Pyxine subcinerea Stirton in Garhwal Himalayas. Environmental Monitoring and Assessment, 141, 237–243.CrossRefGoogle Scholar
  29. Shukla, V., & Upreti, D. K. (2009). Polycyclic aromatic hydrocarbon (PAH) accumulation in lichen, Phaephyscia hispidula of Dehradun City, Garhwal Himalayas. Environmental Monitoring and Assessment, 149, 1–7.CrossRefGoogle Scholar
  30. Shukla, V., Upreti, D. K., Patel, D. K., & Tripathi, R. (2009). Accumulation of polycyclic aromatic hydrocarbons in some lichens of Garhwal Himalayas, India. International Journal of Environmental Waste Management, 5, 104–113.CrossRefGoogle Scholar
  31. Tsai, P. J., Shieh, H. Y., Lee, W. J., & Lai, S. O. (2002). Characterization of PAHs in the atmosphere of carbon black manufacturing work places. Journal of Hazardous Materials, 91, 25–42.CrossRefGoogle Scholar
  32. Upreti, D. K., & Pandey, V. (2000). Determination of heavy metals in lichens growing on different ecological habitats in Schirmacher Oasis, East Antarctica. Spectroscopy Letter, 33, 435–444.CrossRefGoogle Scholar
  33. US EPA (1986). Test methods for evaluating solid waste (Vol 1B). Laboratory Manual Physical/Chemical Methods. Washington, DCGoogle Scholar
  34. Westerholm, R., & Li, H. (1994). A multivariate statistical analysis of fuel-related polycyclic aromatic hydrocarbon emissions from heavy-duty diesel vehicles. Environmental Science and Technology, 28, 965–972.CrossRefGoogle Scholar
  35. Yang, H. H., & Chen, C. M. (2004). Emission inventory and sources of polycyclic aromatic hydrocarbons in the atmosphere at a suburban area in Taiwan. Chemosphere, 56, 879–887.CrossRefGoogle Scholar
  36. Yunker, M. B., MacDonald, R. W., Vingarzan, R., Mitchell, H. R., Goyette, D., & Sylvestre, S. (2002). PAHs in the Fraser River basin: A critical appraisal of PAH ratios as indicators of PAH source and composition. Organic Geochemistry, 33, 489–515.CrossRefGoogle Scholar
  37. Zelano, V., Torazzo, A., Berto, S., Ginepro, M., Prenesti, E., & Ferrari, A. (2006). Biomonitoring of traffic originated PAHs in the air. International Journal of Environmental Analytical Chemistry, 86, 527–540.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Molecular Bio-prospection DepartmentCentral Institute of Medicinal and Aromatic Plant (CIMAP-CSIR)LucknowIndia
  2. 2.Lichenology LaboratoryNational Botanical Research Institute (CSIR)LucknowIndia
  3. 3.Analytical Chemistry SectionIndian Institute of Toxicology Research (CSIR)LucknowIndia

Personalised recommendations