Skip to main content
Log in

Rinodina sophodes (Ach.) Massal.: a bioaccumulator of polycyclic aromatic hydrocarbons (PAHs) in Kanpur City, India

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The aim of this study is to determine the possibility of using Rinodina sophodes (Ach.) Massal., a crustose lichen as polycyclic aromatic hydrocarbons (PAHs) bioaccumulator for evaluation of atmospheric pollution in tropical areas of India, where few species of lichens are able to grow. PAHs were identified, quantified and compared to evaluate the potential utility of R. sophodes. The limit of detection for different PAHs was found to be 0.008–0.050 μg g − 1. The total PAHs in different sites were ranged between 0.189 ± 0.029 and 0.494 ± 0.105 μg g − 1. The major sources of PAHs were combustion of organic materials, traffic and vehicular exhaust (diesel and gasoline engine). Significantly higher concentration of acenaphthylene and phenanthrene indicates road traffic as major source of PAH pollution in the city. Two-way ANOVA also confirms that all PAHs content showed significant differences between all sampling sites (P 1%). This study establishes the utility of R. sophodes in monitoring the PAHs accumulation potentiality for development of effective tool and explores the most potential traits resistant to the hazardous environmental conditions in the tropical regions of north India, where no such other effective way of biomonitoring is known so far.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Augusto, S. C., Máguas, J., Matos, M. J., Pereira, A., Soares, C., & Branquinho. (2009). Spatial modeling of PAHs in lichens for fingerprinting of multisource atmospheric pollution. Science of the Total Environment, 43, 7762–7769.

    CAS  Google Scholar 

  • Baumard, P., Budzinski, H., & Garrigue, P. (1998). Polycyclic aromatic hydrocarbons in sediments and mussels of the western Mediterranean sea. Environmental Toxicology Chemistry, 17, 765–776.

    Article  CAS  Google Scholar 

  • Blasco, M., Domeno, C., & Nerín, C. (2006). Use of lichens as pollution biomonitors in remote areas: Comparison of PAHs extracted from lichens and atmospheric particles sampled in and around the somport tunnel (Pyrenees). Science of the Total Environment, 40, 6384–6391.

    CAS  Google Scholar 

  • Boström, C. E., Gerde, P., Hanberg, A., Jernström, B., Johansson, C., Kyrklund, T., et al. (2002). Cancer risk assessment, indicators, and guidelines for polycyclic aromatic hydrocarbons in the ambient air. Environmental Health Perspectives, 110, 451–488.

    Article  Google Scholar 

  • Budzenski, H., Jones, I., Bellocq, J., Pierad, C., & Garrigues, P. (1997). Evaluation of sediment contamination by polycyclic aromatic hydrocarbons in the Gironde estuary. Marine Chemistry, 58, 85–97.

    Article  Google Scholar 

  • Caricchia, A. M., Chiavarini, S., & Pezza, M. (1999). Polycyclic aromatic hydrocarbons in the urban atmospheric particulate matter in the city of Naples (Italy). Atmospheric Environment, 33, 3731–3738.

    Article  CAS  Google Scholar 

  • Dahle, S., Savinov, V. M., Matishov, G. G., Evenset, A., & Naes, K. (2003). Polycyclic aromatic hydrocarbons (PAHs) in bottom sediments of the Kara Sea shelf, Gulf of Ob and Yenisei Bay. Science of the Total Environment, 306, 57–71.

    Article  CAS  Google Scholar 

  • Dejean, S., Raynaud, C., Meybeck, M., Della Massa, J. P., & Simon, V. (2009). Polycyclic aromatic hydrocarbons (PAHs) in atmospheric urban area: monitoring on various types of sites. Environmental Monitoring and Assessment, 148, 27–37.

    Article  CAS  Google Scholar 

  • Glick, B. R. (2003). Phytoremediation: Synergistic use of plants and bacteria to clean up the environment. Biotechnology Advance, 21, 383–393.

    Article  CAS  Google Scholar 

  • Gomez, K. A., & Gomez, A. A. (1984). Statistical procedure for agricultural research. New York: Wiley.

    Google Scholar 

  • Grimmer, G., Brune, H., Deutsch-Wenzel, R. P., Dettbarn, G., & Misfeld, J. (1984). Lichens as polycyclic aromatic hydrocarbon bioaccumulators used in atmospheric pollution studies. Journal of National Cancer Institute, 72, 185–90.

    Google Scholar 

  • Grimmer, G., Brune, H., Deutch-Wenzel, R. P., Naujack, K.-W., Misfeld, J., & Timm, J. (1983). On the contribution of polycyclic aromatic hydrocarbons to the carcinogenic impact of automobile exhaust condensate evaluated by local application onto mouse skin. Cancer Letter, 21, 105–113.

    Article  CAS  Google Scholar 

  • Guidotti, M., Stella, D., Owczarek, M., DeMarco, A., & De Simone, C. (2003). Lichens as polycyclic aromatic hydrocarbon bioaccumulators used in atmospheric pollution studies. Journal of Chromatography, 985, 185–90.

    Article  CAS  Google Scholar 

  • Huber, W. (2003). Basic calculations about the limit of detection and its optimal determination. Accred Quality Assurance, 8, 213–217.

    CAS  Google Scholar 

  • Khalili, N., Scheff, P., & Holsen, T. (1995). PAH source fingerprints for coke ovens, diesel and, gasoline engines, highway tunnels, and wood combustion emissions. Atmospheric Environment, 29, 533–542.

    Article  CAS  Google Scholar 

  • Kirchstetter, T. W., Singer, B. C., Harley, R. A., Kendall, G. R., & Chan, W. (1996). Impact of oxygenated gasoline use on California light-duty vehicle emissions. Environmental Science Technology, 30, 661–670.

    Article  CAS  Google Scholar 

  • Ma, L. L., Chu, S. G., Wang, X. T., Cheng, H. X., & Lin, X. Xu. (2005). Polycyclic aromatic hydrocarbons in the surface soils from outskirts of Beijing, China. Chemosphere, 58, 1355–1363.

    Article  CAS  Google Scholar 

  • Marr, L. C., Dzepina, K., Jimenez, J. L., Reisen, F., Bethel, H. L., Arey, J., et al. (2005). Sources and transformations of particle-bound polycyclic aromatic hydrocarbons in Mexico City. Atmospheric Chemistry Physics Discussion, 5, 12741–12773.

    Article  Google Scholar 

  • Marr, L. C., Kirchstetter, T. W., Harley, R. A., Miguel, A. H., Hering, S. V., & Hammond, S. K. (1999). Characterization of polycyclic aromatic hydrocarbons in motor vehicle fuels and exhaust emissions. Environmental Science Technology, 33, 3091–3099.

    Article  CAS  Google Scholar 

  • Migaszewski, Z. M., Galuszka, A., & Paslawski, P. (2002). Polynuclear aromatic hydrocarbons, phenols, and trace metals in selected soil profiles and plant bioindicators in the Holy Cross Mountains, South-Central Poland. Environmental International, 28, 303–313.

    Article  CAS  Google Scholar 

  • Naeth, M. A., & Wilkinson, S. R. (2008). Lichens as biomonitors of air quality around a diamond mine, Northwest Territories, Canada. Journal of Environmental Quality, 37, 1675–1684.

    Article  CAS  Google Scholar 

  • Pandey, P. K., Patel, K. S., & Lenicek, J. (1999). Polycyclic aromatic hydrocarbons: Need for assesssment of health risks in India? Study of an urban-industrial location in India. Environmental Monitoring and Assessment, 59, 287–319.

    Article  CAS  Google Scholar 

  • Park, S. S., Kim, Y. J., & Kang, C. H. (2002). Atmospheric polycyclic aromatic hydrocarbons in Seoul, Korea. Atmospheric Environment, 36, 2917–2924.

    Article  CAS  Google Scholar 

  • Raskin, R. D., & Smith, D. E. (1997). Salt, Phytoremediation of metals: Using plants to remove pollutants from the environment. Current Opinion Biotechnology, 8, 221–226.

    Article  CAS  Google Scholar 

  • Satya, & Upreti, D. K. (2009). Correlation among Carbon, Nitrogen, Sulphur and physiological parameters of Rinodina sophodes in Kanpur City, India. Journal of Hazardous Materials, 163, 1088–1092.

    Article  Google Scholar 

  • Saxena, S. (2004). Lichen flora of Lucknow district with reference to air pollution studies in the area (pp. 1–131). Ph.D. thesis, University of Lucknow (submitted to).

  • Shukla, V., & Upreti, D. K. (2007). Physiological response of the lichen Phaeophyscia hispidula (Ach.) Essl., to the urban environment of Pauri and Srinagar (Garhwal), Himalayas, India. Environmental Pollution, 150, 295–299. doi:10.1016/j.envpol.2007.02.010.

    Article  CAS  Google Scholar 

  • Shukla, V., & Upreti, D. K. (2008). Effect of metallic pollutants on the physiology of lichen, Pyxine subcinerea Stirton in Garhwal Himalayas. Environmental Monitoring and Assessment, 141, 237–243.

    Article  CAS  Google Scholar 

  • Shukla, V., & Upreti, D. K. (2009). Polycyclic aromatic hydrocarbon (PAH) accumulation in lichen, Phaephyscia hispidula of Dehradun City, Garhwal Himalayas. Environmental Monitoring and Assessment, 149, 1–7.

    Article  CAS  Google Scholar 

  • Shukla, V., Upreti, D. K., Patel, D. K., & Tripathi, R. (2009). Accumulation of polycyclic aromatic hydrocarbons in some lichens of Garhwal Himalayas, India. International Journal of Environmental Waste Management, 5, 104–113.

    Article  Google Scholar 

  • Tsai, P. J., Shieh, H. Y., Lee, W. J., & Lai, S. O. (2002). Characterization of PAHs in the atmosphere of carbon black manufacturing work places. Journal of Hazardous Materials, 91, 25–42.

    Article  CAS  Google Scholar 

  • Upreti, D. K., & Pandey, V. (2000). Determination of heavy metals in lichens growing on different ecological habitats in Schirmacher Oasis, East Antarctica. Spectroscopy Letter, 33, 435–444.

    Article  CAS  Google Scholar 

  • US EPA (1986). Test methods for evaluating solid waste (Vol 1B). Laboratory Manual Physical/Chemical Methods. Washington, DC

  • Westerholm, R., & Li, H. (1994). A multivariate statistical analysis of fuel-related polycyclic aromatic hydrocarbon emissions from heavy-duty diesel vehicles. Environmental Science and Technology, 28, 965–972.

    Article  CAS  Google Scholar 

  • Yang, H. H., & Chen, C. M. (2004). Emission inventory and sources of polycyclic aromatic hydrocarbons in the atmosphere at a suburban area in Taiwan. Chemosphere, 56, 879–887.

    Article  CAS  Google Scholar 

  • Yunker, M. B., MacDonald, R. W., Vingarzan, R., Mitchell, H. R., Goyette, D., & Sylvestre, S. (2002). PAHs in the Fraser River basin: A critical appraisal of PAH ratios as indicators of PAH source and composition. Organic Geochemistry, 33, 489–515.

    Article  CAS  Google Scholar 

  • Zelano, V., Torazzo, A., Berto, S., Ginepro, M., Prenesti, E., & Ferrari, A. (2006). Biomonitoring of traffic originated PAHs in the air. International Journal of Environmental Analytical Chemistry, 86, 527–540.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dalip K. Upreti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Satya, Upreti, D.K. & Patel, D.K. Rinodina sophodes (Ach.) Massal.: a bioaccumulator of polycyclic aromatic hydrocarbons (PAHs) in Kanpur City, India. Environ Monit Assess 184, 229–238 (2012). https://doi.org/10.1007/s10661-011-1962-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-011-1962-5

Keywords

Navigation