Advertisement

Environmental Monitoring and Assessment

, Volume 182, Issue 1–4, pp 545–553 | Cite as

Nitrous oxide fluxes from the littoral zone of a lake on the Qinghai-Tibetan Plateau

  • Huai Chen
  • Meng Wang
  • Ning Wu
  • Yanfen Wang
  • Dan Zhu
  • Yongheng Gao
  • Changhui Peng
Article

Abstract

Nitrous oxide (N2O) fluxes were measured in six littoral mirco-zones of Lake Huahu on Qinghai-Tibetan Plateau in the peak growing season of years of 2006 and 2007. The weighted mean N2O flux rate was 0.08 mg N m − 2 h − 1 (ranged from −0.07 to 0.35 mg N m − 2 h − 1). The result was relatively high in the scope of N2O fluxes from boreal and temperate lakes. Emergent plant zones (Hippuris vulgaris and Glyceria maxima stands) recorded the highest N2O flux rate (0.11 ± 0.24 and 0.08 ± 0.17 mg N m − 2 h − 1, respectively). Non-vegetated lakeshore recorded the lowest N2O flux (0.03 ± 0.11 mg N m − 2 h − 1), lower than that from the floating mat zone of Carex muliensis (0.05 ± 0.18 mg N m − 2 h − 1), the floating-leaved plant zone of Polygonum amphibium (0.07 ± 0.11 mg N m − 2 h − 1), and the wet meadow (0.07 ± 0.15 mg N m − 2 h − 1). Standing water depths were important factors to explain such spatial variations in N2O fluxes. Significant temporal variations in N2O fluxes were also found. Such temporal variation in N2O flux in the littoral zone may be dependent on the interaction of water regime and thermal conditions, instead of the latter solely. These results showed the importance of the littoral zone of lake, especially the emergent plant zone, as a hotspot of N2O fluxes in such grazing meadows.

Keywords

Zoige plateau Greenhouse gases fluxes Littoral wetlands N2O budget Nitrogen cycling Lake 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bernal, S., Butturini, A., Nin, E., Sabater, F., & Sabater, S. (2003). Leaf litter dynamics and nitrous oxide emission in a Mediterranean riparian forest: Implications for soil nitrogen dynamics. Journal of Environment Quality, 32, 191–197.CrossRefGoogle Scholar
  2. Chen, H., Wu, N., Yao, S., Gao, Y., Wang, Y., Tian, J., et al. (2010). Diurnal variation of methane emissions from an Alpine wetland on the eastern edge of Qinghai-Tibetan Plateau. Environmental Monitoring and Assessment, 164, 21–28. doi: 10.1007/s10661-009-0871-3.CrossRefGoogle Scholar
  3. Chen, H., Yao, S., Wu, N., Wang, Y., Luo, P., Tian, J., et al. (2008). Determinants influencing seasonal variations of methane emissions from alpine wetlands in Zoige Plateau and their implications. Journal of Geophysical Research, 113, 12303. doi: 10.1029/2006JD008072.CrossRefGoogle Scholar
  4. Crutzen, P. J. (1970). The influence of nitrogen oxides on the atmospheric ozone content. Quarterly Journal of the Royal Meteorological Society, 96, 320–325.CrossRefGoogle Scholar
  5. Denman, K. L., Brasseur, G., Chidthaisong, A., Ciais, P., Dickinson, P. M. C., Hauglustain, R. E., et al. (2007). Couplings between changes in the climate system and biogeochemistry. In S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tignor, & H. L. Miller (Eds.), Climate change 2007: The physical science basis. Contribution of working group I to the fourth assessment report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press.Google Scholar
  6. Dhondt, K., Boeckx, P., Hofman, G., & Van Cleemput, O. (2004). Temporal and spatial patterns of denitrification enzyme activity and nitrous oxide fluxes in three adjacent vegetated riparian buffer zones. Biology and Fertility of Soils, 40, 243–251.CrossRefGoogle Scholar
  7. Du, Y. G., Cui, Y. G., Xu, X. L., Liang, D. Y., Long, R. J., & Cao, G. M. (2008). Nitrous oxide emissions from two Alpine meadows in the Qinghai-Tibetan Plateau. Plant and Soil, 311, 245–254.CrossRefGoogle Scholar
  8. Forster, P., Ramaswamy, V., Artaxo, P., Berntsen, T., Betts, R., Fahey, D. W., et al. (2007). Changes in atmospheric constituents and in radiative forcing. In S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tignor, & H. L. Miller (Eds.), Climate change 2007: The physical science basis. Contribution of working group I to the fourth assessment report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press.Google Scholar
  9. Gao, Y. H., Luo, P., Wu, N., Chen, H., & Wang, G. X. (2008). Impacts of grazing intensity on nitrogen pools and nitrogen cycle in an alpine meadow on the eastern Tibetan Plateau. Applied Ecology and Environmental Research, 6, 69–79.Google Scholar
  10. Groffman, P. M., Gold, A. J., & Addy, K. (2000). Nitrous oxide production in riparian zones and its importance to national emission inventories. Chemosphere-Global Change Science, 2, 291–299.CrossRefGoogle Scholar
  11. Hefting, M. M., Bobbink, R., & de Caluwe, H. (2003). Nitrous oxide emission and denitrification in chronically nitrate-loaded riparian buffer zones. Journal of Environmental Quality, 32, 1194–1203.CrossRefGoogle Scholar
  12. Hefting, M., Clément, J. C., Dowrick, D., Cosandey, A. C., Bernal, S., Cimpian, C., et al. (2004). Water table elevation controls on soil nitrogen cycling in riparian wetlands along a European climatic gradient. Biogeochemistry, 67, 113–134.CrossRefGoogle Scholar
  13. Heincke, M. M., & Kaupenjohann, M. (1999). Effects of soil solution on the dynamics of N2O emissions: A review. Nutrient Cycling in Agroecosystems, 55, 133–157.CrossRefGoogle Scholar
  14. Hernandez, M. E., & Mitsch, W. J. (2006). Influence of hydrologic pulses, flooding frequency, and vegetation on nitrous oxide emissions from created riparian marshes. Wetlands, 26, 862–877.CrossRefGoogle Scholar
  15. Holland, E. A., Braswell, B. H., Sulzman, J., & Lamarque, J. F. (2005). Nitrogen deposition onto the United States and Western Europe: A synthesis of observations and models. Ecological Applications, 15, 38–57.CrossRefGoogle Scholar
  16. Hunt, P. G., Matheny, T. A., & Ro, K. S. (2007). Nitrous oxide accumulation in soils from riparian buffers of a coastal plain watershed carbon/nitrogen ratio control. Journal of Environment Quality, 36, 1368–1376.CrossRefGoogle Scholar
  17. Hutchinson, G. L., & Mosier, A. R. (1981). Improved soil cover method for field measurement of nitrous oxide fluxes. Soil Science Society of America Journal, 45, 311–316.CrossRefGoogle Scholar
  18. Huttunen, J. T., Alm, J., Liikanen, A., Juutinen, S., Larmola, T., Hammar, T., et al. (2003a). Fluxes of methane, carbon dioxide and nitrous oxide in boreal lakes and potential anthropogenic effects on the aquatic greenhouse gas emissions. Chemosphere, 52, 609–621.CrossRefGoogle Scholar
  19. Huttunen, J. T., Juutinen, S., Alm, J., Larmola, T., Hammar, T., Silvola, J., et al. (2003b). Nitrous oxide flux to the atmosphere from the littoral zone of a boreal lake. Journal of Geophysical Research-Atmospheres, 108(D14), 4421. doi: 10.1029/2002JD002989.CrossRefGoogle Scholar
  20. Jiang, J. H., & Huang, X. (2004). Distribution and variation of lakes in Tibetan Plateau and their comparison with lakes in other part of China (In Chinese with a English abstract). Water Resources Conservation, 6, 24–27.Google Scholar
  21. Lu, R. K. (1999). Analytical methods of soil agrochemistry. Beijing: Chinese Agriculture Science and Technology Press.Google Scholar
  22. McClain, M., Boyer, E. W., Dent, C. L., Gergel, S., Grimm, N., Groffman, P., et al. (2003). Biogeochemical hot spots and hot moments at the interface of terrestrial and aquatic ecosystems. Ecosystems, 6, 301–312CrossRefGoogle Scholar
  23. Mosier, A., & Delgado, J. A. (1997). Methane and nitrous oxide fluxes from grasslands in Western Puerto Rico. Chemosphere, 35, 2059–2082.CrossRefGoogle Scholar
  24. Mosier, A. R., Schimel, D. S., Valentine, D. W., Bronson, K. F., & Parton, W. J. (1991). Methane and nitrous oxide fluxes in native, fertilized, and cultivated grasslands. Nature, 335, 330–332.CrossRefGoogle Scholar
  25. Naiman, R. J., Bunn, S. E., Nilsson, C., Petts, G. E., Pinay, G., & Thompson, L. C. (2002). Legitimizing fluvial ecosystems as users of water: An overview. Environmental Management, 30, 455–467.CrossRefGoogle Scholar
  26. Nilsson, C., & Svedmark, M. (2002). Basic principles and ecological consequences of changing water regimes: Riparian plant communities. Environment Management, 30, 468–480.CrossRefGoogle Scholar
  27. Schnabel, R. R., & Stout, W. L. (1994). Denitrification loss from two Pennsylvania floodplain soils. Journal of Environment Quality, 23, 344–348.Google Scholar
  28. Silvan, N., Regina, K., Kitunen, V., Vasander, H., & Laine, J. (2002). Gaseous nitrogen loss from a restored peatland buffer zone. Soil Biology and Biochemistry, 34, 721–728.CrossRefGoogle Scholar
  29. Sovik, A., & Klove, B. (2007). Emission of N2O and CH4 from a constructed wetland in southeastern Norway. Science of The Total Environment, 380, 28–37.CrossRefGoogle Scholar
  30. Ullah, S., & Zinati, G. M. (2006). Denitrification and nitrous oxide emissions from riparian forests soils exposed to prolonged nitrogen runoff. Biogeochemistry, 81, 253–267.CrossRefGoogle Scholar
  31. Van Cleemput, O. (1998). Subsoils: Chemo- and biological denitrification. N2O and N2 emissions. Nutrient Cycling in Agroecosystems, 52, 187–194.CrossRefGoogle Scholar
  32. van den Heuvel, R. N., Hefting, M. M., Tan, N. C. G., Jetten, M. S. M., & Verhoeven, J. T. A. (2009). N2O emission hotspots at different spatial scales and governing factors for small scale hotspots. Science of The Total Environment, 407, 2325–2332.CrossRefGoogle Scholar
  33. Wang, H., Wang, W., Yin, C., Wang, Y., & Lu, J. (2006). Littoral zones as the “hotspots” of nitrous oxide (N2O) emission in a hyper-eutrophic lake in China. Atmospheric Environment, 40, 5522–5527.CrossRefGoogle Scholar
  34. Wang, H. J., Yang, L. Y., Wang, W. D., Lu, J. W., & Yin, C. Q. (2007). Nitrous oxide (N2O) fluxes and their relationships with water-sediment characteristics in a hyper-eutrophic shallow lake, China. Journal of Geophysical Research-Biogeosciences, 112, G01005. doi: 10.1029/2005JG000129.CrossRefGoogle Scholar
  35. Zheng, D., Zhang, Q., & Wu, S. (2000). Mountain geoecology and sustainable development of the Tibetan Plateau. Dordrecht: Kluwer Academic Publishers.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Huai Chen
    • 1
    • 2
    • 3
  • Meng Wang
    • 2
  • Ning Wu
    • 2
  • Yanfen Wang
    • 4
  • Dan Zhu
    • 2
  • Yongheng Gao
    • 5
  • Changhui Peng
    • 1
    • 3
  1. 1.College of ForestryNorthwest Agriculture and Forest UniversityYanglinChina
  2. 2.Chengdu Institute of BiologyChinese Academy of SciencesChengduChina
  3. 3.Institute of Environment SciencesUniversity of QuebecMontrealCanada
  4. 4.Graduate UniversityChinese Academy of SciencesBeijingChina
  5. 5.Institute of Mountain Hazards and EnvironmentChinese Academy of SciencesChengduChina

Personalised recommendations