Environmental Monitoring and Assessment

, Volume 182, Issue 1–4, pp 215–232 | Cite as

Limnological study on a newly built drinking water reservoir near Tirana, Albania

  • Alqiviadh Çullaj
  • Sonila Duka
  • Artan Emiri
  • Erlinda Koni
  • Aleko Miho
  • Bledar Murtaj
  • Spase Shumka
  • Reinhard Bachofen
  • Ferdinand Schanz
  • Helmut Brandl


Bovilla Lake is a reservoir constructed 12 years ago for supplying the city of Tirana (Albania) mainly with drinking water. It has a surface area of 4.6 km2, a maximum depth of originally 60 m and is monomictic with a stratification period from early spring to end of October. The lake is oligotrophic with low nutrient concentrations (e.g. SRP in spring about 8 μg L − 1) and minor oxygen depletion in the hypolimnion during thermal stagnation. The lake is highly turbid due to severe particle import by several rivers during rain periods. This led to a massive deposition of sediments, lifting the maximum depth to 45 m in 2008. Furthermore, the photic zone reached hardly more than 10 m. Algal species diversity is high; however, diatoms from the genus Cyclotella dominate most of the year both in numbers and biomass. Our study describes for the first time the hydrography and limnology of the Bovilla Reservoir.


Bovilla Reservoir Drinking water supply Turbidity Oligotrophy Suspended material Cyclotella 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

10661_2010_1871_MOESM1_ESM.doc (395 kb)
(DOC 395 kb)


  1. Anonymous (1996). Impianti Hydrotek I Bovilles/Impianto iIdrotecnico di Bovilla (pp. 1–24). Tirana: Ministria e Ndertimit dhe Turizmit.Google Scholar
  2. APHA (1988). Standard methods for the examination of water and wastewater (20th ed.), Washington DC, USA: American Public Health Association.Google Scholar
  3. Bachofen, R. (2009). Concentration and size distribution of inorganic particles and cells in Lake Bovilla (Albania). In A. Miho, A. Cullaj, & R. Bachofen (Eds.), Bovilla (Albania) a limnological study (pp. 181–190). Tirana.Google Scholar
  4. Bleiker, W., & Schanz, F. (1989). Influence of environmental factors on the phytoplankton spring bloom in Lake Zürich. Aquatic Sciences, 51, 47–58.CrossRefGoogle Scholar
  5. Chanudet, V., & Filiella, M. (2007). The fate of inorganic colloidal particles in Lake Brienz. Aquatic Sciences, 69, 199–211.CrossRefGoogle Scholar
  6. Chanudet, V., & Filiella, M. (2008). Size and composition of inorganic colloids in a peri-alpine, glacial flour-rich lake. Geochimica et Cosmochimica Acta, 72, 1466–1479.CrossRefGoogle Scholar
  7. Cullaj, A., & Bachofen, R. (2009). Undesirable odor and taste events in Bovilla drinking water, relation to lake limnology and preliminary analysis. In A. Miho, A. Cullaj, & R. Bachofen (Eds.), Bovilla (Albania) a limnological study (pp. 191–202) Tirana.Google Scholar
  8. Finger, D., Bossard, P., Schmid, M., Jaun, L., Müller, B., Steiner, D., et al. (2007). Effects of alpine hydropower operations on primary production in a downstream lake. Aquatic Sciences, 69, 240–256.CrossRefGoogle Scholar
  9. Fink, J. C. (2005). The effects of urbanization on Baird Creek, Green Bay, Wisconsin (pp. 145). MS thesis, Green Bay: University of Wisconsin.Google Scholar
  10. Floqi, T. (2007). Water quality and health—Albanian case. Proceedings of the 2nd French Serbian Summer School “Water quality control, from concept to action, October 7–13, 2007, Vrnjacka Banya, Serbia, 102-118.
  11. Gammeter, S., Forster, R., & Zimmermann, U. (1997). Limnologische Untersuchung des Zürichsees (pp. 62). Zürich: Wasserversorgung Zürich.Google Scholar
  12. Geider, R. J., Platt, T., & Raven, J. A. (1986). Size dependence of growth and photosynthesis in diatoms: A synthesis. Marine Ecology, 30, 93–104.CrossRefGoogle Scholar
  13. Gippel, C. J. (1995). Potential of turbidity monitoring for measuring the transport of suspended solids in streams. Hydrologic Processes, 9, 83–97.CrossRefGoogle Scholar
  14. Gjata, A. (1997). Works resume in Bovilla Reservoir. Albanian Telegraph Agency (ATA) Tirana, Sept. 11th, 1997.
  15. Gloyer, G. (2004). Albania. Buck: Bradt Travel Guides Ltd.Google Scholar
  16. Hawes, I., & Schwarz, A. M. (1999). Photosynthesis in an extreme shade environment: benthic microbial mats from Lake Hoare, a permanently ice-covered antarctic lake. Journal of Phycology, 35, 448–459.CrossRefGoogle Scholar
  17. Hutchinson, G. E. (1957). A treatise on limnology, Vol. I: Geography, physics and chemistry (pp. 1030). New York: Wiley.Google Scholar
  18. Ikeya, T., Kashino, Y., Kudoh, S., Imura, S., Watanabe, K., & Fukuchi, M. (2000). Acclimation of photosynthetic properties in psychrophilic diatom isolates under different light intensities. Polar Bioscience, 13, 43–54.Google Scholar
  19. INSTAT (2010). Statistical Institute, Tirana,
  20. Jüttner, F., & Watson, S. B. (2007). Biochemical and ecological control of geosmin and 2-methylisoborneol in source waters. Applied and Environmental Microbiology, 73, 4395–4406.CrossRefGoogle Scholar
  21. Kabo, M. (Ed.) (1990–91). Physical geography of Albania. (Vol. I pp. 400 (1990), Vol. II, pp. 590 (1991)). Tirana: Albanian Academy Science.Google Scholar
  22. Karamelo, P., & Lazo, P. (2008). Shkumbini river water quality estimation, based on physico-chemical parameters and nutrient concentrations. Proceedings International Conference on biological and environmental Sciences. (pp. 684–687) Tirana.Google Scholar
  23. Karlsson, J., Byström, P., Ask, J., Ask, P., Persson, L., & Jansson, M. (2009). Light limitation of nutrient-poor lake ecosystems. Nature, 460, 506–509.CrossRefGoogle Scholar
  24. Lenhart, C. F., Brooks, K. N., Heneley, D., & Magner, J. A. (2010). Spatial and temporal variation in suspended sediment, organic matter, and turbidity in a Minnesota prairie river: implications for TMDLs. Environmental Monitoring and Assessment, 165, 435–447.CrossRefGoogle Scholar
  25. Lewis, D. J., Tate, K. W., Dahlgren, R. A., & Newell, J. (2002). Turbidity and total suspended solid concentration dynamics in streamflow from California oak woodland watersheds. USDA Forest Service Gen. Technical Report PSW-GTR-184, (pp. 107–118).Google Scholar
  26. McMinn, A., Ashworth, C., & Ryan, K. G. (2000). In situ net primary productivity of an Antarctic fast ice bottom algal community. Aquatic Microbial Ecology, 21, 177–185.CrossRefGoogle Scholar
  27. Miho, A., Cullaj, A., Hasko, A., Lazo, P., Kupe, L., Bachofen et al. (2005). Environmental state of some rivers of Albanian Adriatic Lowland. (pp. 267), Tirana.Google Scholar
  28. Miho, A., Cullaj, A., Bachofen, R. (Eds.) (2009a). Bovilla (Albania) a limnological study. (pp. 348).Tirana.Google Scholar
  29. Miho, A., Shuka, L., Cullaj, A., & Bachofen, R. (2009b). Environmental analyses of Bovilla watershed (Albania)—an overview. In: A. Miho, A. Cullaj, R. Bachofen (Eds.) Bovilla (Albania) a limnological study. (pp. 11–46) Tirana.Google Scholar
  30. Minder, L. (1923). Über biogene Entkalkung im Zürichsee. Verhandlungen Internationale Vereinigung Limnolologie, 1, 20–32.Google Scholar
  31. Palombi, L., Villa, L., Divizia, M., Cenko, F., Siniari, V., Rotigliano, G., et al. (2001). Tirana, Albania: survey on drinking water quality and facilities. Water Science Technology, 43, 81–87.Google Scholar
  32. Popovich, C. A., & Gayoso, A. M. (1999). Effect of irradiance and temperature on the growth rate of Thalassiosira curviseriata Takano (Bacillariophyceae), a bloom diatom in Bahia Blanca estuary (Argentinia). Journal Plankton Research, 21, 1101–1110.CrossRefGoogle Scholar
  33. Randerson, T. J., Fink, J. C., Fermanich, K. J., Baumgart, P., & Ehlinger, T. (2005). Total suspended solids— turbidity correlation in Northwestern Wisconsin streams. AWRA Section Meeting, Delavan Wisconsin.
  34. Rühland, K., Paterson, A. M., & Smol, J. P. (2008). Hemispheric-scale patterns of climate-related shifts in planktonic diatoms from North American and European lakes. Global Change Biology, 14, 2740–2754.Google Scholar
  35. Schulz, S., & Dickschat, J. S. (2007). Bacterial volatiles: the smell of small organisms. Natural Products Reports, 24, 814–842.CrossRefGoogle Scholar
  36. Sommer, U. (1984a). Sedimentation of principal phytoplankton species in Lake Constance. Journal of Plankton Research, 6, 1–14.CrossRefGoogle Scholar
  37. Sommer, U. (1984b). The paradox of the plankton: fluctuations of phosphorus availability maintain diversity of phytoplankton in flow-through cultures. Limnology and Oceanography, 29, 633–636.CrossRefGoogle Scholar
  38. Sommer, U., & Stabel, H. H. (1983). Silicon consumption and phytoplankton density changes of dominant planktonic diatoms in Lake Constance. Journal of Ecology, 71, 119–130.CrossRefGoogle Scholar
  39. Sterner, R. (2008). On the phosphorus limitation paradigm for lakes. International Revue of Hydrobiology, 93, 433–445.CrossRefGoogle Scholar
  40. Thackeray, S. J., Jones, I. D., Maberly, S. C. (2008). Long-term change in the phenology of spring phytoplankton: species-specific responses to nutrient enrichment and climatic change. Journal of Ecology, 96, 523–535.CrossRefGoogle Scholar
  41. Utermöhl, H. (1958). Zur Vervollkommnung der quantitativen Phytoplankton-Methodik. Mitteilungen Internationalen Vereinigung Theoretische Angewandte Limnologie, 9, 1–38.Google Scholar
  42. Vallja, L., Cullaj, A., & Duka, S. (2008). Phosphate concentrations in the sediment of Bovilla Lake. Proceedings International Conference on biological and environmental Sciences, (pp. 640–644), Tirana.Google Scholar
  43. Wetzel, G. W. (2001). Limnology—Lake and river ecosystems (pp. 1006). Oxford: Elsevier.Google Scholar
  44. Winder, M., Reuter, J. E., Schladow, S. G. (2009). Lake warming favours small-sized planktonic diatom species. Proceedings of the Royal Society B, 276, 427–435.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Alqiviadh Çullaj
    • 1
  • Sonila Duka
    • 1
  • Artan Emiri
    • 2
  • Erlinda Koni
    • 3
  • Aleko Miho
    • 4
  • Bledar Murtaj
    • 5
  • Spase Shumka
    • 6
  • Reinhard Bachofen
    • 7
  • Ferdinand Schanz
    • 7
  • Helmut Brandl
    • 8
  1. 1.Chemistry, Faculty of Natural SciencesUniversity of TiranaTiranaAlbania
  2. 2.Drinking Water Treatment PlantTiranaAlbania
  3. 3.Institute of Veterinary Food SecurityTiranaAlbania
  4. 4.Biology, Faculty of Natural SciencesUniversity of TiranaTiranaAlbania
  5. 5.University Research Center of Waters, Energy and EnvironmentPolytechnic University of TiranaTiranaAlbania
  6. 6.Faculty of Biotechnology and FoodAgricultural University of TiranaTiranaAlbania
  7. 7.Institute of Plant BiologyUniversity of ZürichZürichSwitzerland
  8. 8.Institute of Evolutionary Biology and Environmental SciencesUniversity of ZürichZürichSwitzerland

Personalised recommendations