Skip to main content

Advertisement

Log in

Monitoring and estimating scale-dependent hierarchical relationships between Sicyopterus japonicus density and stream habitat features in different seasons in northern Taiwan

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Biological and physical processes operate collaboratively through spatial or temporal scales to form ecological patterns, which are considered as a key element for understanding the natural liens within an ecosystem. Given the importance of scaling in ecological inference, this study elucidates how physical and biological variables under or within scales interact with each other. Density of Sicyopterus japonicus and environmental variables are examined and quantified at 70 stream sections distributed among 14 reaches in the Datuan stream catchment of northern Taiwan during the fall and winter of 2007, as well as the spring and summer of 2008. Hierarchical linear regression analysis indicates that S. japonicus density and habitat features are related on two levels, i.e., sections within reaches and reaches within streams throughout the year. Moreover, parameter uncertainty is represented by the confidence interval, which is calculated by the variance–covariance matrix of hierarchical linear model (HLM) parameters. According to HLM results, environmental variables at the section level (water depth and current velocity) and the reach level (stream width, water temperature, stream slope, soil erosion index) influence S. japonicus density. Although S. japonicus density varies significantly among reaches and sections within reaches, cross-level interaction may not always influence the distribution, processes and activities of S. japonicus throughout the year. The HLMs of S. japonicus density associated with stream features describe thoroughly multiple processes and the activities of S. japonicus across scales and within scales during different seasons. The annual HLM results represent the overall biological and physical patterns of the Datuan stream annually, explaining why they do not reflect seasonal associations or explain S. japonicus-related activities and environmental features of the stream.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abe, S., Iguchi, K., Ito, S., Uchida, Y., Ohnishi, H., & Ohmori, K. (2003). Habitat use of the grazing goby (Sicyopterus japonicus) in response to spatial heterogeneity in riparian shade. Journal of Freshwater Ecology, 18, 161–167.

    Article  Google Scholar 

  • Abe, S., Yodo, T., Matsubara, N., & Iguchi, K. (2007). Distribution of two sympatric amphidromous grazing fish Plecoglossus alivelis Temminck and Schlegel and Sicypoterus japonicus (Tanka) along the course of a temperate river. Hydrobiologia, 575, 415–422.

    Article  Google Scholar 

  • Akihito, K., Sakamoto, K., Ikeda, Y., & Iwata, A. (2000). Gobioidei. In: T. Nakabo (Ed.), Fishes of Japan with pictorial keys to the species (2nd edn.). Tokyo: Tokai University Press.

    Google Scholar 

  • Barbour, M. T., Gerritsen, J., Snyder, B. D., & Stribling, J. B. (1999). Rapid Bioassessment Protocols for Use in Streams and Wadeable Rivers: Periphyton, Benthic Macroinvertebrates and Fish, Second Edition. EPA 841-B-99-002. USEPA.

  • Berk, R., & de Leeuw, J. (2006). Multilevel statistical models and ecological scaling. In: J. Wu, et al. (Eds.), Scaling and uncertainty analysis in ecology (pp. 67–88). Springer.

  • Bryk, A., & Raudenbush, S. W. (1992). Hierarchical linear models for social and behavioral research: Applications and data analysis methods. Newbury Park, CA, USA: Sage Publications.

    Google Scholar 

  • Cohen, P., Andriamahefa, H., & Wasson, J. G. (1998). Towards a regionalization of aquatic habitat: Distribution of mesohabitat at the scale of a large basin. Regulated Rivers: Research, Management, 14, 391–404.

    Article  Google Scholar 

  • Cote, D. (2007). Measurements of salmonid population performance in relation to habitat in eastern Newfoundland streams. Journal of Fish Biology, 70, 1134–1147.

    Article  Google Scholar 

  • Coulombe-Pontbriand, M., & Lapointe, M. (2004). Geomorphic controls, riffle substrate quality, and spawning site selection in two semi-alluvial salmon rivers in the Gaspé Peninsula, Canada. River Research and Applications, 20, 577–590.

    Article  Google Scholar 

  • Cushing, D. H. (1975). Manne ecology and fisheries. New York: Cambridge Univ. Press.

    Google Scholar 

  • Craven, S. W., Peterson, J. T., Freeman, M. C., Kwak, T. J., & Irwin, E. (2010). Modeling the relations between flow regime components, species traits, and spawning success of fishes in warmwater streams. Environmental Management, 46, 181–194.

    Article  Google Scholar 

  • Dêschenes, J., & Rodriguez, M. A. (2007). Hierarchical analysis of relationships between brook trout (Salvelinus fontinlais) density and stream habitat features. Canadian Journal of Fisheries and Aquatic Sciences, 64, 777–785.

    Article  Google Scholar 

  • Dunham, J. B., & Rieman, B. E. (1999). Metapopulation structure of bull trout: Influences of physical, biotic, and geometrical landscape characteristics. Ecological Applications, 9, 642–655.

    Article  Google Scholar 

  • Dunham, J. B., & Vinyard, G. L. (1997). Incorporating stream level variability into analyses of site level fish habitat relationships: Some cautionary examples. Transactions of the American Fisheries Society, 126, 323–329.

    Article  Google Scholar 

  • Durance, I., Celine, L., & Ormercod, S. J. (2006). Recognizing the importance of scale in the ecology and management of riverine fish. River Research and Applications, 22, 1143–1152.

    Article  Google Scholar 

  • Fausch, K. D., Torgersen, C. E., Baxter, C., & Hiram, W. L. (2002). Landscapes to riverscapes: Bridging the gap between research and conservation of stream fishes. BioScience, 52, 483–498.

    Article  Google Scholar 

  • Frimpong, E., Sutton, T. M., Engel, B. A., & Simon, T. P. (2005). Spatial-scale effects on relative importance of physical habitat predictors of stream health. Environmental Management, 36, 899–917.

    Article  Google Scholar 

  • Frissell, C. A., Liss, W. J., Warren, C. E., & Hurley, M. D. (1986). A hierarchical framework for stream habitat classification: Viewing streams in a watershed context. Environmental Management, 10, 199–214.

    Article  Google Scholar 

  • Ganio, L. M., Torgersen, C. E., & Gresswell, R. E. (2005). A geostatistical approach for describing spatial pattern in stream networks. Frontiers in Ecology and the Environment, 3, 138–144.

    Article  Google Scholar 

  • Goldstein, H. (2003). Multilevel statistical models. Oxford Univ. Press.

  • Hox, J. J. (2002). Multilevel analysis: Techniques and applications. Mahwah, NJ: Erlbaum.

    Google Scholar 

  • Ibarra, A. A., Park, Y. S., Brosse, S., Reyjol, Y., Lim, P., & Lek, S. (2005). Nested patterns of spatial diversity revealed for fish assemblages in a west European river. Ecology of Freshwater Fish, 14, 233–242.

    Article  Google Scholar 

  • Iida, M., Watanabe, S., Shinoda, A., & Tsukamoto, K. (2008). Recruitment of amphidromous goby Sicypoterus japonicus to the estuary of the Ota River, Wakayama, Japan. Environmental Biology of Fishes, 83, 331–341.

    Article  Google Scholar 

  • Inoue, M., & Miyayoshi, M. (2006). Fish foraging effects on benthic assemblages along a warm-temperate stream: Differences among drift feeders, benthic predators and grazers. Oikos, 114, 95–107.

    Article  Google Scholar 

  • Inoue, M., & Nunokawa, M. (2002). Effects of longitudinal variations in stream habitat structure on fish abundance: An analysis based on subunit-scale habitat classification. Freshwater Biology, 47, 1594– 1607.

    Article  Google Scholar 

  • Isaak, D. J., & Hubert, W. A. (2000). Are trout populations affected by reach-scale stream slope. Canadian Journal of Fisheries and Aquatic Sciences, 57, 468–477.

    Article  Google Scholar 

  • Knapp, R. A., Vredenburg, V. T., & Matthews, K. R. (1998). Effects of stream channel morphology on golden trout spawning habitat and recruitment. Ecological Applications, 8, 1104–1117.

    Article  Google Scholar 

  • Kozel, S. J., Huber, W. A., & Parsons, M. G. (1989). Habitat features and trout abundance relative to stream gradient in some Wyoming streams. Northwest Science, 63, 555–582.

    Google Scholar 

  • Liang, S. H. (2005). Developing models for freshwater bio-monitoring. Taipei: National Park Workshop.

    Google Scholar 

  • Lin, Y.-P., Wang, C.-L., Yu, H.-H. & Wang, Y.-C. (2010a). Estimating and classifying spatial and temporal distributions of flow conditions for fish habitats by using geostatistical approaches with measured flow and fish data. Lecture Notes in Computer Science, 6016, 224–237.

    Article  Google Scholar 

  • Lin, Y.-P., Wang, C.-L., Yu, H.-H., & Wang, Y.-C. (2010b). Estimating and classifying spatial and temporal distributions of flow conditions for fish habitats by using geostatistical approaches with measured flow and fish data. Lecture Notes in Computer Science, 6016/2010, 224–237.

    Article  Google Scholar 

  • MacNeil, M. A., Graham, N. A. J., Polunin, N. V. C., Kulbicki, M., Galzin, R., Harmelin-Vivien, M., et al. (2009). Hierarchical drivers of reef-fish metacommunity structure. Ecology, 90, 252–264.

    Article  Google Scholar 

  • Magalhães, M. F., Batalha, D. C., & Collares-Pereira, M. J. (2002). Gradients in stream assemblages across a Mediterranean landscape: Contributions of environmental factors and spatial structure. Freshwater Biology, 47, 1015–1031.

    Article  Google Scholar 

  • McDowall, R. M. (1988). Diadromy in fishes. Migrations between freshwater and marine environments. London: Croom Helm.

    Google Scholar 

  • McMahon, S. M., & Diez, J. M. (2007). Scales of association: Using hierarchical linear models to measure ecological systems. Ecology Letters, 10, 437–452.

    Article  Google Scholar 

  • Mesquita, N., Coelho, M., & Filomena, M. (2006). Spatial variation in fish assemblages across small Mediterranean drainages: Effects of habitat and landscape context. Environmental Biology of Fishes, 77, 105–120.

    Article  Google Scholar 

  • Poizat, G., & Pont, D. (1996). Multi-scale approach to species–habitat relationships: Juvenile fish in a large river section. Freshwater Biology, 36, 611–622.

    Article  Google Scholar 

  • Rabeni, C. F. (2000). Evaluating physical habitat integrity in relation to the biological potential of streams. Hydrobiologia, 422/423, 245–256.

    Article  Google Scholar 

  • Rabeni, C. F., & Sowa, S. P. (1996). Integrating biological realism into habitat restoration and conservation strategies for small streams. Canadian Journal of Fisheries and Aquatic Sciences, 53, 252–259.

    Article  Google Scholar 

  • Radtke, R. L., Kinzie, R. A., & Shafer, D. J. (2001). Temporal and spatial variation in length of larval life and size at settlement of the Hawaiian amphidromous goby Lentipes concolor. Journal of Fish Biology, 59, 928–938.

    Google Scholar 

  • Raudenbush, S. W., & Bryk, A. S. (2002). Hierarchical linear models: Applications and data analysis (2nd edn.). Thousand Oaks, CA: Sage.

    Google Scholar 

  • Raudenbush, S. W., Bryk, A. S., Cheong, Y. F., & Congdon, R. T. (2004). HLM: Hierarchical and Nonlinear Modeling (Version 6.06) [computer software], 6.0 6edition. Lincolnwood, IL: Scientific Software International.

    Google Scholar 

  • Rosenfeld, J., Porter, M., & Parkinson, E. (2000). Habitat factors affecting the abundance and distribution of juvenile cutthroat (Oncorhynchus clarki) and coho salmon (Oncorhynchus kisutch). Canadian Journal of Fisheries and Aquatic Sciences, 57, 766–774.

    Article  Google Scholar 

  • Schneider, D. C. (2001). The rise of the concept of scale in ecology. Bioscience, 51, 545–553.

    Article  Google Scholar 

  • Shen, K. N., & Tzeng, W. N. (2002). Formation of a metamorphosis check in otoliths of the amphidromous goby Sicyopterus japonicus. Marine Ecology-Progress Series, 228, 205–211.

    Article  Google Scholar 

  • Shen, K. N., Lee, Y. C., & Tzeng, W. N. (1998). Use of otolith microchemistry to investigate the life history pattern of gobies in a Taiwanese stream. Zoological Studies, 37, 322–329.

    Google Scholar 

  • Shiao, J. C. (1998). Early life history and fry resources of amphidromous gobies in Hsuikuluan River. Master Thesis, National Tsing Hua University, Hsinchu, Taiwan (in Chinese with English abstract).

  • Smiley, P. C., & Dibble, E. D. (2005). Implications of a hierarchical relationship among channel form, instream habitat, and stream communities for restoration of channelized streams. Hydrobiologia, 548, 279–292.

    Article  Google Scholar 

  • Storch, D., Evans, K. L., & Gaston, K. J. (2005). The species–area–energy relationship. Ecology Letters, 8, 487–492.

    Article  Google Scholar 

  • Thogmartin, W. E., Knutson, M. G., & Sauer, J. R. (2006). Predicting regional abundance of rare grassland birds with a hierarchical spatial count model. Condor, 108, 25–46.

    Article  Google Scholar 

  • Tzeng, C. S. (1986). The freshwater fishes of Taiwan. Taiwan: Ministry of Education (p. 183). (in Chinese).

    Google Scholar 

  • Van de Pol, M., & Verhulst, S. (2006). Age-dependent traits: A new statistical model to separate within- and between-individual effects. American Naturalist, 167, 766–773.

    Article  Google Scholar 

  • Vázquez, D. P., & Simberloff, D. (2004). Indirect effects of an introduced ungulate on pollination and reproduction. Ecological Monographs, 74, 281–308.

    Article  Google Scholar 

  • Watson, G., & Hillman, T. W. (1997). Factors affecting the distribution and abundance of bull trout: An investigation at hierarchical scales. North American Journal of Fisheries Management, 17, 237–252.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu-Pin Lin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, HH., Lin, YP. & Wang, CL. Monitoring and estimating scale-dependent hierarchical relationships between Sicyopterus japonicus density and stream habitat features in different seasons in northern Taiwan. Environ Monit Assess 182, 171–186 (2011). https://doi.org/10.1007/s10661-010-1867-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-010-1867-8

Keywords

Navigation