Environmental Monitoring and Assessment

, Volume 182, Issue 1–4, pp 171–186 | Cite as

Monitoring and estimating scale-dependent hierarchical relationships between Sicyopterus japonicus density and stream habitat features in different seasons in northern Taiwan

  • Hsiao-Hsuan Yu
  • Yu-Pin Lin
  • Cheng-Long Wang


Biological and physical processes operate collaboratively through spatial or temporal scales to form ecological patterns, which are considered as a key element for understanding the natural liens within an ecosystem. Given the importance of scaling in ecological inference, this study elucidates how physical and biological variables under or within scales interact with each other. Density of Sicyopterus japonicus and environmental variables are examined and quantified at 70 stream sections distributed among 14 reaches in the Datuan stream catchment of northern Taiwan during the fall and winter of 2007, as well as the spring and summer of 2008. Hierarchical linear regression analysis indicates that S. japonicus density and habitat features are related on two levels, i.e., sections within reaches and reaches within streams throughout the year. Moreover, parameter uncertainty is represented by the confidence interval, which is calculated by the variance–covariance matrix of hierarchical linear model (HLM) parameters. According to HLM results, environmental variables at the section level (water depth and current velocity) and the reach level (stream width, water temperature, stream slope, soil erosion index) influence S. japonicus density. Although S. japonicus density varies significantly among reaches and sections within reaches, cross-level interaction may not always influence the distribution, processes and activities of S. japonicus throughout the year. The HLMs of S. japonicus density associated with stream features describe thoroughly multiple processes and the activities of S. japonicus across scales and within scales during different seasons. The annual HLM results represent the overall biological and physical patterns of the Datuan stream annually, explaining why they do not reflect seasonal associations or explain S. japonicus-related activities and environmental features of the stream.


Fish density Habitat Scale Hierarchical linear model (HLM) Sicyopterus japonicus 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abe, S., Iguchi, K., Ito, S., Uchida, Y., Ohnishi, H., & Ohmori, K. (2003). Habitat use of the grazing goby (Sicyopterus japonicus) in response to spatial heterogeneity in riparian shade. Journal of Freshwater Ecology, 18, 161–167.CrossRefGoogle Scholar
  2. Abe, S., Yodo, T., Matsubara, N., & Iguchi, K. (2007). Distribution of two sympatric amphidromous grazing fish Plecoglossus alivelis Temminck and Schlegel and Sicypoterus japonicus (Tanka) along the course of a temperate river. Hydrobiologia, 575, 415–422.CrossRefGoogle Scholar
  3. Akihito, K., Sakamoto, K., Ikeda, Y., & Iwata, A. (2000). Gobioidei. In: T. Nakabo (Ed.), Fishes of Japan with pictorial keys to the species (2nd edn.). Tokyo: Tokai University Press.Google Scholar
  4. Barbour, M. T., Gerritsen, J., Snyder, B. D., & Stribling, J. B. (1999). Rapid Bioassessment Protocols for Use in Streams and Wadeable Rivers: Periphyton, Benthic Macroinvertebrates and Fish, Second Edition. EPA 841-B-99-002. USEPA.Google Scholar
  5. Berk, R., & de Leeuw, J. (2006). Multilevel statistical models and ecological scaling. In: J. Wu, et al. (Eds.), Scaling and uncertainty analysis in ecology (pp. 67–88). Springer.Google Scholar
  6. Bryk, A., & Raudenbush, S. W. (1992). Hierarchical linear models for social and behavioral research: Applications and data analysis methods. Newbury Park, CA, USA: Sage Publications.Google Scholar
  7. Cohen, P., Andriamahefa, H., & Wasson, J. G. (1998). Towards a regionalization of aquatic habitat: Distribution of mesohabitat at the scale of a large basin. Regulated Rivers: Research, Management, 14, 391–404.CrossRefGoogle Scholar
  8. Cote, D. (2007). Measurements of salmonid population performance in relation to habitat in eastern Newfoundland streams. Journal of Fish Biology, 70, 1134–1147.CrossRefGoogle Scholar
  9. Coulombe-Pontbriand, M., & Lapointe, M. (2004). Geomorphic controls, riffle substrate quality, and spawning site selection in two semi-alluvial salmon rivers in the Gaspé Peninsula, Canada. River Research and Applications, 20, 577–590.CrossRefGoogle Scholar
  10. Cushing, D. H. (1975). Manne ecology and fisheries. New York: Cambridge Univ. Press.Google Scholar
  11. Craven, S. W., Peterson, J. T., Freeman, M. C., Kwak, T. J., & Irwin, E. (2010). Modeling the relations between flow regime components, species traits, and spawning success of fishes in warmwater streams. Environmental Management, 46, 181–194.CrossRefGoogle Scholar
  12. Dêschenes, J., & Rodriguez, M. A. (2007). Hierarchical analysis of relationships between brook trout (Salvelinus fontinlais) density and stream habitat features. Canadian Journal of Fisheries and Aquatic Sciences, 64, 777–785.CrossRefGoogle Scholar
  13. Dunham, J. B., & Rieman, B. E. (1999). Metapopulation structure of bull trout: Influences of physical, biotic, and geometrical landscape characteristics. Ecological Applications, 9, 642–655.CrossRefGoogle Scholar
  14. Dunham, J. B., & Vinyard, G. L. (1997). Incorporating stream level variability into analyses of site level fish habitat relationships: Some cautionary examples. Transactions of the American Fisheries Society, 126, 323–329.CrossRefGoogle Scholar
  15. Durance, I., Celine, L., & Ormercod, S. J. (2006). Recognizing the importance of scale in the ecology and management of riverine fish. River Research and Applications, 22, 1143–1152.CrossRefGoogle Scholar
  16. Fausch, K. D., Torgersen, C. E., Baxter, C., & Hiram, W. L. (2002). Landscapes to riverscapes: Bridging the gap between research and conservation of stream fishes. BioScience, 52, 483–498.CrossRefGoogle Scholar
  17. Frimpong, E., Sutton, T. M., Engel, B. A., & Simon, T. P. (2005). Spatial-scale effects on relative importance of physical habitat predictors of stream health. Environmental Management, 36, 899–917.CrossRefGoogle Scholar
  18. Frissell, C. A., Liss, W. J., Warren, C. E., & Hurley, M. D. (1986). A hierarchical framework for stream habitat classification: Viewing streams in a watershed context. Environmental Management, 10, 199–214.CrossRefGoogle Scholar
  19. Ganio, L. M., Torgersen, C. E., & Gresswell, R. E. (2005). A geostatistical approach for describing spatial pattern in stream networks. Frontiers in Ecology and the Environment, 3, 138–144.CrossRefGoogle Scholar
  20. Goldstein, H. (2003). Multilevel statistical models. Oxford Univ. Press.Google Scholar
  21. Hox, J. J. (2002). Multilevel analysis: Techniques and applications. Mahwah, NJ: Erlbaum.Google Scholar
  22. Ibarra, A. A., Park, Y. S., Brosse, S., Reyjol, Y., Lim, P., & Lek, S. (2005). Nested patterns of spatial diversity revealed for fish assemblages in a west European river. Ecology of Freshwater Fish, 14, 233–242.CrossRefGoogle Scholar
  23. Iida, M., Watanabe, S., Shinoda, A., & Tsukamoto, K. (2008). Recruitment of amphidromous goby Sicypoterus japonicus to the estuary of the Ota River, Wakayama, Japan. Environmental Biology of Fishes, 83, 331–341.CrossRefGoogle Scholar
  24. Inoue, M., & Miyayoshi, M. (2006). Fish foraging effects on benthic assemblages along a warm-temperate stream: Differences among drift feeders, benthic predators and grazers. Oikos, 114, 95–107.CrossRefGoogle Scholar
  25. Inoue, M., & Nunokawa, M. (2002). Effects of longitudinal variations in stream habitat structure on fish abundance: An analysis based on subunit-scale habitat classification. Freshwater Biology, 47, 1594– 1607.CrossRefGoogle Scholar
  26. Isaak, D. J., & Hubert, W. A. (2000). Are trout populations affected by reach-scale stream slope. Canadian Journal of Fisheries and Aquatic Sciences, 57, 468–477.CrossRefGoogle Scholar
  27. Knapp, R. A., Vredenburg, V. T., & Matthews, K. R. (1998). Effects of stream channel morphology on golden trout spawning habitat and recruitment. Ecological Applications, 8, 1104–1117.CrossRefGoogle Scholar
  28. Kozel, S. J., Huber, W. A., & Parsons, M. G. (1989). Habitat features and trout abundance relative to stream gradient in some Wyoming streams. Northwest Science, 63, 555–582.Google Scholar
  29. Liang, S. H. (2005). Developing models for freshwater bio-monitoring. Taipei: National Park Workshop.Google Scholar
  30. Lin, Y.-P., Wang, C.-L., Yu, H.-H. & Wang, Y.-C. (2010a). Estimating and classifying spatial and temporal distributions of flow conditions for fish habitats by using geostatistical approaches with measured flow and fish data. Lecture Notes in Computer Science, 6016, 224–237.CrossRefGoogle Scholar
  31. Lin, Y.-P., Wang, C.-L., Yu, H.-H., & Wang, Y.-C. (2010b). Estimating and classifying spatial and temporal distributions of flow conditions for fish habitats by using geostatistical approaches with measured flow and fish data. Lecture Notes in Computer Science, 6016/2010, 224–237.CrossRefGoogle Scholar
  32. MacNeil, M. A., Graham, N. A. J., Polunin, N. V. C., Kulbicki, M., Galzin, R., Harmelin-Vivien, M., et al. (2009). Hierarchical drivers of reef-fish metacommunity structure. Ecology, 90, 252–264.CrossRefGoogle Scholar
  33. Magalhães, M. F., Batalha, D. C., & Collares-Pereira, M. J. (2002). Gradients in stream assemblages across a Mediterranean landscape: Contributions of environmental factors and spatial structure. Freshwater Biology, 47, 1015–1031.CrossRefGoogle Scholar
  34. McDowall, R. M. (1988). Diadromy in fishes. Migrations between freshwater and marine environments. London: Croom Helm.Google Scholar
  35. McMahon, S. M., & Diez, J. M. (2007). Scales of association: Using hierarchical linear models to measure ecological systems. Ecology Letters, 10, 437–452.CrossRefGoogle Scholar
  36. Mesquita, N., Coelho, M., & Filomena, M. (2006). Spatial variation in fish assemblages across small Mediterranean drainages: Effects of habitat and landscape context. Environmental Biology of Fishes, 77, 105–120.CrossRefGoogle Scholar
  37. Poizat, G., & Pont, D. (1996). Multi-scale approach to species–habitat relationships: Juvenile fish in a large river section. Freshwater Biology, 36, 611–622.CrossRefGoogle Scholar
  38. Rabeni, C. F. (2000). Evaluating physical habitat integrity in relation to the biological potential of streams. Hydrobiologia, 422/423, 245–256.CrossRefGoogle Scholar
  39. Rabeni, C. F., & Sowa, S. P. (1996). Integrating biological realism into habitat restoration and conservation strategies for small streams. Canadian Journal of Fisheries and Aquatic Sciences, 53, 252–259.CrossRefGoogle Scholar
  40. Radtke, R. L., Kinzie, R. A., & Shafer, D. J. (2001). Temporal and spatial variation in length of larval life and size at settlement of the Hawaiian amphidromous goby Lentipes concolor. Journal of Fish Biology, 59, 928–938.Google Scholar
  41. Raudenbush, S. W., & Bryk, A. S. (2002). Hierarchical linear models: Applications and data analysis (2nd edn.). Thousand Oaks, CA: Sage.Google Scholar
  42. Raudenbush, S. W., Bryk, A. S., Cheong, Y. F., & Congdon, R. T. (2004). HLM: Hierarchical and Nonlinear Modeling (Version 6.06) [computer software], 6.0 6edition. Lincolnwood, IL: Scientific Software International.Google Scholar
  43. Rosenfeld, J., Porter, M., & Parkinson, E. (2000). Habitat factors affecting the abundance and distribution of juvenile cutthroat (Oncorhynchus clarki) and coho salmon (Oncorhynchus kisutch). Canadian Journal of Fisheries and Aquatic Sciences, 57, 766–774.CrossRefGoogle Scholar
  44. Schneider, D. C. (2001). The rise of the concept of scale in ecology. Bioscience, 51, 545–553.CrossRefGoogle Scholar
  45. Shen, K. N., & Tzeng, W. N. (2002). Formation of a metamorphosis check in otoliths of the amphidromous goby Sicyopterus japonicus. Marine Ecology-Progress Series, 228, 205–211.CrossRefGoogle Scholar
  46. Shen, K. N., Lee, Y. C., & Tzeng, W. N. (1998). Use of otolith microchemistry to investigate the life history pattern of gobies in a Taiwanese stream. Zoological Studies, 37, 322–329.Google Scholar
  47. Shiao, J. C. (1998). Early life history and fry resources of amphidromous gobies in Hsuikuluan River. Master Thesis, National Tsing Hua University, Hsinchu, Taiwan (in Chinese with English abstract).Google Scholar
  48. Smiley, P. C., & Dibble, E. D. (2005). Implications of a hierarchical relationship among channel form, instream habitat, and stream communities for restoration of channelized streams. Hydrobiologia, 548, 279–292.CrossRefGoogle Scholar
  49. Storch, D., Evans, K. L., & Gaston, K. J. (2005). The species–area–energy relationship. Ecology Letters, 8, 487–492.CrossRefGoogle Scholar
  50. Thogmartin, W. E., Knutson, M. G., & Sauer, J. R. (2006). Predicting regional abundance of rare grassland birds with a hierarchical spatial count model. Condor, 108, 25–46.CrossRefGoogle Scholar
  51. Tzeng, C. S. (1986). The freshwater fishes of Taiwan. Taiwan: Ministry of Education (p. 183). (in Chinese).Google Scholar
  52. Van de Pol, M., & Verhulst, S. (2006). Age-dependent traits: A new statistical model to separate within- and between-individual effects. American Naturalist, 167, 766–773.CrossRefGoogle Scholar
  53. Vázquez, D. P., & Simberloff, D. (2004). Indirect effects of an introduced ungulate on pollination and reproduction. Ecological Monographs, 74, 281–308.CrossRefGoogle Scholar
  54. Watson, G., & Hillman, T. W. (1997). Factors affecting the distribution and abundance of bull trout: An investigation at hierarchical scales. North American Journal of Fisheries Management, 17, 237–252.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Department of Bioenvironmental Systems EngineeringNational Taiwan UniversityTaipei CityChina

Personalised recommendations