Environmental Monitoring and Assessment

, Volume 182, Issue 1–4, pp 97–113 | Cite as

Development, validation, and uncertainty measurement of multi-residue analysis of organochlorine and organophosphorus pesticides using pressurized liquid extraction and dispersive-SPE techniques

  • Doyeli Sanyal
  • Anita Rani
  • Samsul Alam
  • Seema Gujral
  • Ruchi Gupta


Simple and efficient multi-residue analytical methods were developed and validated for the determination of 13 organochlorine and 17 organophosphorous pesticides from soil, spinach and eggplant. Techniques namely accelerated solvent extraction and dispersive SPE were used for sample preparations. The recovery studies were carried out by spiking the samples at three concentration levels (1 limit of quantification (LOQ), 5 LOQ, and 10 LOQ). The methods were subjected to a thorough validation procedure. The mean recovery for soil, spinach and eggplant were in the range of 70–120% with median CV (%) below 10%. The total uncertainty was evaluated taking four main independent sources viz., weighing, purity of the standard, GC calibration curve and repeatability under consideration. The expanded uncertainty was well below 10% for most of the pesticides and the rest fell in the range of 10–20%.


Pesticides Organophosphorus Organochlorines Multi-residue method Validation Uncertainty measurement 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anastassiades, M., Lehotay, S. J., Stajnbaher, D., & Schenck, F. J. (2003). Fast and easy multiresidue method employing acetonitrile extraction/partitioning and “dispersive solid-phase extraction” for the determination of pesticide residues in produce. Journal of AOAC International, 86(2), 412–431.Google Scholar
  2. Aysal, P., Ambrus, A., Lehotay, S. J., & Cannavan, A. (2007). Validation of an efficient method for the determination of pesticide residues in fruits and vegetables using ethyl acetate for extraction. Journal of environmental science and health. Part. B, Pesticides, food contaminants, and agricultural wastes, 42(5), 481–490.Google Scholar
  3. Banerjee, K., Oulkar, D. P., Dasgupta, S., Patil, S. B., Patil, S. H., Savant, R., et al. (2007). Validation and uncertainty analysis of a multi-residue method for pesticides in grapes using ethyl acetate extraction and liquid chromatography–tandem mass spectrometry. Journal of Chromatography A, 1173, 98–109.CrossRefGoogle Scholar
  4. Codex Guidelines (2003). Good laboratory practice in residue analysis. CAC/GL 40-1993, Rev.1.Google Scholar
  5. Concha-Grana, E., Fernandez-Gonzalez, V., Turnes-Carou, M. I., Muniategui-Lorenzo, S., Lopez-Mahia, P., & Prada-Rodriguez, D. (2007). Pressurized liquid extraction of organochlorine pesticides from certified solid materials. Journal of Chromatographic Science, 45(7), 369–374.Google Scholar
  6. Corley, J. (2005). Handbook of residue analytical methods for agrochemicals, p. 59. Wiley.Google Scholar
  7. Cuadros-Rodriguez, L., Hernandez Torres, M. E., Almansa Lopez, E., Egea Gonzalez, F. J., Arrebola Liebanas, F. J., & Martinez Vidal, J. L. (2002). Assessment of uncertainty in pesticide multiresidue analytical methods: Main sources and estimation. Analytica Chimica Acta, 454(2), 297–314.CrossRefGoogle Scholar
  8. Dionex Application Note 319 (2011). Extraction of organophosphorus pesticides using accelerated solvent extraction (ASE®).
  9. Dionex Application Note 320 (2011). Extraction of chlorinated pesticides using accelerated solvent extraction (ASE®).
  10. EURACHEM/CITAC Guide CG 4, EURACHEM/CITAC Guide (2000). Quantifying uncertainty in analytical measurement, 2nd ed.
  11. Ezzell, J. L., Richter, B. E., Felix, W. D., Black, S. R., & Meikle, J. E. (1995). A Comparison of accelerated solvent extraction with conventional solvent extraction for organophosphorus pesticides and herbicides. LC·GC, 13, 390–398.Google Scholar
  12. Hussen, A., Westbom, R., Megersa, N., Mathiasson, L., & Bjorklund, E. (2007). Selective pressurized liquid extraction for multi-residue analysis of organochlorine pesticides in soil. Journal Chromatogaphy A, 1152(1–2), 247–253.CrossRefGoogle Scholar
  13. ISO/TS 21748 (2004). Guidance for the use of repeatability, reproducibility and trueness estimates in measurement uncertainty estimation.Google Scholar
  14. Kampioti, A. A., Borba da Cunha, A. C., Lopez de Alda, M., & Barcelo, D. (2005). Fully automated multianalyte determination of different classes of pesticides, at picogram per litre levels in water, by on-line solid-phase extraction–liquid chromatography–electrospray–tandem mass spectrometry. Analytical Bioanalytical Chemistry, 382, 1815–1825.CrossRefGoogle Scholar
  15. Lehotay, S. J. (2007). Determination of pesticide residues in foods by acetonitrile extraction and partitioning with magnesium sulfate: Collaborative study. Journal of AOAC International, 90(2), 485–520.Google Scholar
  16. Lehotay, S. J., de Kok, A., Hiemstra, M., & Van Bodegraven, P. (2005). Validation of a fast and easy method for the determination of residues from 229 pesticides in fruits and vegetables using gas and liquid chromatography and mass spectrometric detection. Journal of AOAC International, 88(2), 595–614.Google Scholar
  17. Richter, B. E., Ezzell, J. L., Felix, D., Roberts, K. A., & Later, D. W. (1995). An accelerated solvent extraction system for the rapid preparation of environmental organic compounds in soil. Americal Laboratory, 27, 24–28.Google Scholar
  18. Stajnbaher, D., & Zupancic-kralj, L. (2003). Multiresidue method for determination of 90 pesticides in fresh fruits and vegetables using solid-phase extraction and gas chromatography–mass spectrometry. Journal of Chromatography A, 1015(1–2), 185–198.CrossRefGoogle Scholar
  19. Stepan, R., Hajslova, J., Kocourek, V., & Ticha, J. (2004). Uncertainties of gas chromatographic measurement of troublesome pesticide residues in apples employing conventional and mass spectrometric detectors. Analytica Chimica Acta, 520(1–2), 245–255.Google Scholar
  20. Thompson, M., Ellison, S. L., & Wood, R. (2002). Harmonized guidelines for single laboratory validation of methods of analysis. IUPAC Technical Report. Pure Applied Chemistry, 74, 835–855.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Doyeli Sanyal
    • 1
  • Anita Rani
    • 2
  • Samsul Alam
    • 2
  • Seema Gujral
    • 2
  • Ruchi Gupta
    • 2
  1. 1.Inspectorate DivisionOrganisation for Prohibition of Chemical WeaponsThe HagueThe Netherland
  2. 2.Analytical DivisionInstitute of Pesticide Formulation TechnologyGurgaonIndia

Personalised recommendations