Advertisement

Environmental Monitoring and Assessment

, Volume 182, Issue 1–4, pp 15–30 | Cite as

Dinoflagellate community structure from the stratified environment of the Bay of Bengal, with special emphasis on harmful algal bloom species

  • Ravidas Krishna Naik
  • Sahana Hegde
  • Arga Chandrashekar Anil
Article

Abstract

Harmful algal blooms (HABs) have been documented along the coasts of India and the ill effects felt by society at large. Most of these reports are from the Arabian Sea, west coast of India, whereas its counterpart, the Bay of Bengal (BOB), has remained unexplored in this context. The unique characteristic features of the BOB, such as large amount of riverine fresh water discharges, monsoonal clouds, rainfall, and weak surface winds make the area strongly stratified. In this study, 19 potentially harmful species which accounted for approximately 14% of the total identified species (134) of dinoflagellates were encountered in surface waters of the BOB during November 2003 to September 2006. The variations in species abundance could be attributed to the seasonal variations in the stratification observed in the BOB. The presence of frequently occurring HAB species in low abundance (≤40 cell L − 1) in stratified waters of the BOB may not be a growth issue. However, they may play a significant role in the development of pelagic seed banks, which can serve as inocula for blooms if coupled with local physical processes like eddies and cyclones. The predominance of Ceratium furca and Noctiluca scintillans, frequently occurring HAB species during cyclone-prone seasons, point out their candidature for HABs.

Keywords

Ceratium furca Noctiluca scintillans Bay of Bengal Stratification Cyclones Eddies 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adolf, J. E., Bachvaroff, T. R., Krupatkina, D. N. & Place, A. R. (2007). Karlotoxin mediates grazing by Oxyrrhis marina on strains of Karlodinium veneficum. Harmful Algae, 6, 400–412.CrossRefGoogle Scholar
  2. Anderson, D. M. (1989). Toxic algal blooms and red tides: A global perspective. In T. Okaichi, D. M. Anderson, & T. Nemoto (Eds.), Red tides: Biology, environmental science and toxicology (pp. 11–16). Elsevier Science.Google Scholar
  3. Avaria, S. P. (1979). Red tides off the coast of Chile. In D. L. Taylor & H. H. Seliger (Eds.), Toxic dinoflagellate blooms (pp. 161–164). New York: Elsevier/North-Holland.Google Scholar
  4. Baek, S. H., Shimode, S., & Kikuchi, T. (2006). Reproductive ecology of dominant dinoflagellate, Ceratium furca in the coastal area of Sagami Bay. Coastal Marine Science, 30, 344–352.Google Scholar
  5. Baek, S. H., Shimode, S., & Kikuchi, T. (2007). Reproductive ecology of the dominant dinoflagellate, Ceratium fusus in coastal area of Sagami Bay, Japan. Journal of Oceanography, 63, 35–45.CrossRefGoogle Scholar
  6. Baek, S. H., Shimode, S., Han, M. S., & Kikuchi, T. (2008a). Growth of dinoflagellates, Ceratium furca and Ceratium fusus in Sagami Bay, Japan: The role of nutrients. Harmful Algae, 7, 729–739.CrossRefGoogle Scholar
  7. Baek, S. H., Shimode, S., Han, M. S., & Kikuchi, T. (2008b). Population development of the dinoflagellates Ceratium furca and Ceratium fusus during spring and early summer in Iwa Harbor, Sagami Bay, Japan. Ocean Science Journal, 43, 49–59.CrossRefGoogle Scholar
  8. Baek, S. H., Shimode, S., & Kikuchi, T. (2008c). Growth of dinoflagellates, Ceratium furca and Ceratium fusus in Sagami Bay, Japan: The role of temperature, light intensity and photoperiod. Harmful Algae, 7, 163–173.CrossRefGoogle Scholar
  9. Baek, S. H., Shimode, S., Shin, K., Han, M. S., & Kikuchi, T. (2009). Growth of dinoflagellates, Ceratium furca and Ceratium fusus in Sagami Bay, Japan: The role of vertical migration and cell division. Harmful Algae, 8, 843–856.CrossRefGoogle Scholar
  10. Belgrano, A., Lindahl, O., & Hernroth, B. (1999). North Atlantic Oscillation primary productivity and toxic phytoplankton in the Gullmar Fjord, Sweden (1985–1996). Proceedings Royal Society London, B, 266, 425–430.CrossRefGoogle Scholar
  11. Eashwar, M., Nallathambi, T., Kuberaraj, K., & Govindarajan, G. (2001). Noctiluca blooms in Port Blair, Andamans. Current Science, 81, 203–206.Google Scholar
  12. Escalera, L., Reguera, B., Moita, T., Pazos, Y., Cerejo, M., Cabanas, J. M., et al. (2010). Bloom dynamics of Dinophysis acuta in an upwelling system: In situ growth versus transport. Harmful Algae, 9, 312–322.CrossRefGoogle Scholar
  13. Fistarol, G. O., Legrand, C., Selander, E., Hummert, C., Stolte, W., Graneli, E., et al. (2004). Allelopathy in Alexandrium spp.: Effect on a natural plankton community and on algal monocultures. Aquatic Microbial Ecology, 35, 45–56.CrossRefGoogle Scholar
  14. GEOHAB (2001). Global ecology and oceanography of harmful algal blooms. In P. Glibert, & G. Pitcher (Eds.), Science plan (pp. 1–86). Baltimore and Paris: SCOR and IOC.Google Scholar
  15. GEOHAB (2003). Global ecology and oceanography of harmful algal blooms. In P. Gentien, G. Pitcher, A. Cembella, & P. Glibert (Eds.), Implementation plan. Baltimore and Paris: SCOR and IOC.Google Scholar
  16. GEOHAB (2006). Global ecology and oceanography of harmful algal blooms: HABs in Eutrophic systems. In P. Glibert (Ed.), IOC and SCOR, Paris and Baltimore.Google Scholar
  17. Godhe, A., Karunasagar, I., & Karunasagar, I. (1996). Gymnodinium catenatum on west coast of India (p. 1). Harmful Algae News, No. 15.Google Scholar
  18. Gomes, H. D. R., Goes, I. J., & Siano, T. (2000). Influence of physical processes and freshwater discharge on the seasonality of phytoplankton regime in the Bay of Bengal. Continental Shelf Research, 20, 313–330.CrossRefGoogle Scholar
  19. Gomes, H. D. R., Goes, J. I., Prabhu, M., Parab, S. G., Al-Azri, A. R. N., & Thoppil, P. G. (2008). Blooms of Noctiluca miliaris in the Arabian Sea—an in situ and satellite study. Deep-Sea Research I, 55, 751–765.CrossRefGoogle Scholar
  20. Gordon, A. L., Giulivi, C. F., Takahashi, T., Sutherland, S., Morrison, J., & Olson, D. (2002). Bay of Bengal nutrient-rich benthic layer. Deep-Sea Research II, 49, 1411–1421.CrossRefGoogle Scholar
  21. Hallegraeff, G. M. (1993). A review of harmful algal blooms and their apparent global increase. Phycologia, 32, 79–99.CrossRefGoogle Scholar
  22. Hallegraeff, G. M. (2010). Ocean climate change, phytoplankton community responses, and harmful algal blooms: A formidable predictive challenge. Journal of Phycologia, 46, 220–235.CrossRefGoogle Scholar
  23. Hallegraeff, G. M., Anderson, D. M., & Cembella, A. D. (2003). Manual on harmful marine microalgae. Monographs on oceanographic methodology. UNESCO.Google Scholar
  24. Hasle, G. R. (1978). Settling. In A. Sournia (Ed.), Phytoplankton manual (pp. 69–74). Paris: UNESCO.Google Scholar
  25. Horner, R. A. (2002). A taxonomic guide to some common marine phytoplankton (pp. 1–195). Bristol, England, UK: Biopress, Bristol.Google Scholar
  26. Jyothibabu, R., Madhu, N. V., Maheswaran, P. A., Nair, K. K. C., Venugopal, P., Balasubramanian, T., et al. (2003). Dominance of dinoflagellates in microzooplankton community in the oceanic regions of the Bay of Bengal and the Andaman Sea. Current Science, 84, 1247–1253.Google Scholar
  27. Kabanova, J. G. (1964). Primary production and nutrient salt content in the Indian Ocean waters in October to April 1960/61. Tr Inst Okeanol Akad Nauk SSSR, 64, 85–93.Google Scholar
  28. Karl, D., Letelier, R., Tupas, L., Dore, J., Christian, J., Hebel, D., et al. (1997). The role of nitrogen fixation in biogeochemical cycling in the subtropical North Pacific Ocean. Nature, 388, 533–538.CrossRefGoogle Scholar
  29. Karunasagar, I., Gowda, H. S. V., Subburaj, M., Venugopal, M. N., & Karunasagar, I. (1984). Outbreak of paralytic shellfish poisoning in Mangalore, West Coast of India. Current Science, 53, 247–249.Google Scholar
  30. Latz, M. I., & Jeong, H. J. (1996). Effect of red tide dinoflagellate diet and cannibalism on the bioluminescence of the heterotrophic dinoflagellates Protoperidinium spp. Marine Ecology Progress Series, 132, 275–285.CrossRefGoogle Scholar
  31. Legrand, C., Granéli, E., & Carlsson, P. (1998). Induced phagotrophy in the photosynthetic dinoflagellate Heterocapsa triquetra. Aquatic Microbial Ecology, 15, 65–75.CrossRefGoogle Scholar
  32. Maclean, J. L. (1989). Indo-Pacific red tides, 1985–1988. Marine Pollution Bulletin, 20, 304–310.CrossRefGoogle Scholar
  33. Madhu, N. V., Maheswaran, P. A., Jyothibabu, R., Sunil, V., Revichandran, C., Balasubramanian, T., et al. (2002). Enhanced biological production off Chennai triggered by October 1999 super cyclone (Orissa). Current Science, 82, 1472–1479.Google Scholar
  34. McGill, D. A. (1973). Light and nutrients in the Indian Ocean. In: B. Zeitzschel (Ed.), The biology of Indian Ocean (pp. 53–102). Berlin: Springer.Google Scholar
  35. Mohanty, A. K., Satpathy, K. K., Sahu, G., Sasmal, S. K., Sahu, B. K., & Panigrahy, R. C. (2007). Red tide of Noctiluca scintillans and its impact on the coastal water quality of the near-shore waters, off the Rushikulya River, Bay of Bengal. Current Science, 93, 616–618.Google Scholar
  36. Mukhopadhyay, S. K., Biswas, H., De, T. K., & Jana, T. K. (2006). Fluxes of nutrients from the tropical River Hooghly at the land–ocean boundary of Sundarbans, NE Coast of Bay of Bengal, India. Journal of Marine Systems, 62, 9–21.CrossRefGoogle Scholar
  37. Naqvi, S. W. A., George, M. D., Narvekar, P. V., Jayakumar, D. A., Shailaja, M. S., Sardesai, S., et al. (1998). Severe fish mortality associated with ‘red tide’ observed in the sea off Cochin. Current Science, 75, 543–544.Google Scholar
  38. Narvekar, J., & Prasanna Kumar, S. (2006). Seasonal variability of the mixed layer in the central Bay of Bengal and associated changes in nutrients and chlorophyll. Deep-Sea Research I, 53, 820–835.CrossRefGoogle Scholar
  39. Nishitani, G., Yamaguchi, M., Ishikawa, A., Yanagiya, S., Mitsuya, T., Imai, I., et al. (2005). Relationships between occurrences of toxic Dinophysis species (Dinophyceae) and small phytoplanktons in Japanese coastal waters. Harmful Algae, 4, 755–762.CrossRefGoogle Scholar
  40. Paul, J. T., Ramaiah, N., Gauns, M., & Fernandes, V. (2007). Preponderance of a few diatom species among the highly diverse microphytoplankton assemblages in the Bay of Bengal. Marine Biology, 152, 63–75.CrossRefGoogle Scholar
  41. Paul, J. T., Ramaiah, N., & Sardessai, S. (2008). Nutrient regimes and their effect on distribution of phytoplankton in the Bay of Bengal. Marine Environmental Research, 66, 337–344.CrossRefGoogle Scholar
  42. Pitcher, G. C., & Boyd, A. J. (1996). Across- and alongshore dinoflagellate distributions and the mechanisms of red tide formation within the southern Benguela upwelling system. In T. Yasumoto, Y. Oshima, & Y. Fukuyo (Eds.), Harmful and toxic algal blooms (pp. 243–246). Intergovernmental Oceanographic Commission of UNESCO.Google Scholar
  43. Prasanna Kumar, S., Muraleedharan, P. M., Prasad, T. G., Gauns, M., Ramaiah, N., de Souza, S. N., et al. (2002). Why is the Bay of Bengal less productive during summer monsoon compared to the Arabian Sea? Geophysical Research Letters, 29, 2235. doi: 10.1029/2002GL016013.CrossRefGoogle Scholar
  44. Prasanna Kumar, S., Nuncio, M., Narvekar, J., Kumar, A., Sardesai, S., Desouza, S. N., et al. (2004). Are eddies nature’s trigger to enhance biological productivity in the Bay of Bengal? Geophysical Research Letters, 31, L07309. doi: 10.1029/2003Gl019274.CrossRefGoogle Scholar
  45. Raghu Prasad, R. (1953). Swarming of Noctiluca in the Palk Bay and its effect on the ‘Choodai’ fishery with a note on the possible use of Noctiluca as an indicator species. Proceedings in Indian Academic of Sciences, 38(Section B), 40–47.Google Scholar
  46. Raghu Prasad, R. (1956). Further studies on the plankton of the inshore waters off Mandapam. Indian Journal of Fisheries, 3, 1–42.Google Scholar
  47. Rao, K. H., Smitha, A., & Ali, M. M. (2006). A study on cyclone-induced productivity in south-western Bay of Bengal during November–December 2000 using MODIS (SST and Chlorophyll-a) and altimeter sea surface height observations. Indian Journal of Marine Sciences, 35, 153–160.Google Scholar
  48. Rozanov, A. G. (1964). Distribution of phosphate and silicate in the waters of the northern part of the Indian Ocean. Trudy Instituta Okeanologii. Akademii Nauk SSSR, 64, 102–114.Google Scholar
  49. Santha Joseph, P. (1975). Seasonal distribution of phytoplankton in the Vellar estuary. Indian Journal of Marine Sciences, 42, 198–200.Google Scholar
  50. Segar, K., Karunasagar, I., & Karunasagar, I. (1989). Dinoflagellate toxins in shellfishes along the coast of Karnataka. In M. Mohan Joseph (Ed.), The first Indian fisheries forum proceedings (pp. 389–390). Mangalore: Asian Fisheries Society, Indian Branch.Google Scholar
  51. Setala, O., Autio, R., Kuosa, H., Rintala, J., & Ylostalo, P. (2005). Survival and photosynthetic activity of different Dinophysis acuminata populations in the northern Baltic Sea. Harmful Algae, 4, 337–350.CrossRefGoogle Scholar
  52. Shetye, S. R., Gouveia, A. D., Shankar, D., Shenoi, S. S. C., Vinayachandran, P. N., Sundar, D., et al. (1996). Hydrography and circulation in the western Bay of Bengal during the northeast monsoon. Journal of Geophysical Research, 101, 14011–14025.CrossRefGoogle Scholar
  53. Smayda, T. J. (1990). Novel and nuisance phytoplankton blooms in the sea: Evidence for a global epidemic. In E. Granéli, B. Sundström, L. Edler, & D. M. Anderson (Eds.), Toxic marine phytoplankton (pp. 29–40). New York: Elsevier.Google Scholar
  54. Smayda, T. J. (1997). Harmful algal blooms: Their ecophysiology and general relevance to phytoplankton blooms in the sea. Limnology and Oceanography, 42, 1137–1153.CrossRefGoogle Scholar
  55. Smayda, T. J. (2002). Turbulence, watermass stratification and harmful algal blooms: An alternative view and frontal zones as “pelagic seed banks”. Harmful Algae, 1, 95–112.CrossRefGoogle Scholar
  56. Sokal, R. R., & Rohlf, F. J. (1981). In Biometry (2nd ed.). San Francisco: Freeman.Google Scholar
  57. Solé, J., Estrada, M., & Garcia-Ladona, E. (2006). Biological control of harmful algal blooms: A modelling study. Journal of Marine Systems, 61, 165–179.Google Scholar
  58. Sournia, A. (1995). Red tide and toxic marine phytoplankton of the world ocean: An inquiry into biodiversity. In P. Lassus, G. Arzul, E. Erard, P. Gentien, & C. Marcaillou (Eds.), Harmful marine algal blooms. Proceedings 6th International Conference on Toxic Marine Phytoplankton (pp. 103–112) France, 1993, Lavoisier.Google Scholar
  59. Sriwoon, R., Pholpunthin, P., Lirdwitayaprasit, T., Kishino, M., & Furuya, K. (2008). Population dynamics of green Noctiluca scintillans (Dinophyceae) associated with the monsoon cycle in the upper gulf of Thailand. Journal of Phycologia, 44, 605–615.CrossRefGoogle Scholar
  60. Steidinger, K. A. (1983). A re-evaluation of toxic dinoflagellate biology and ecology. Progress in Phycologial Research, 2, 147–188.Google Scholar
  61. Steidinger, K. A. (1993). Some taxonomic and biological aspects of toxic dinoflagellates. In I. A. Falconer (Ed.), Algal toxins in seafood and drinking water (pp. 1–28). London: Academic.Google Scholar
  62. Stoecker, D. K., Tillmann, U., & Granéli, E. (2006). Phagotrophy in harmful algae. In E. Granéli & J. T. Turner (Eds.), Ecology of harmful algae (pp. 177–187). Berlin, Germany: Springer.CrossRefGoogle Scholar
  63. Subrahmanyan, R. (1968). The dinophyceae of the Indian Seas, part 1, genus ceratium schrank. Memoir ll, Marine Biological Association of India, City Printers, Ernakulam, Cochin—ll.Google Scholar
  64. Taylor, F. J. R. (1976). Dinoflagellates from the international Indian Ocean expedition. A report on material collected by R.V.Anton Bruun 1963–1964. Plates 1–46.Google Scholar
  65. Tomas, C. R. (1997). Identifying marine phytoplankton (pp. 387–589). San Diego, California: Academic.Google Scholar
  66. UNESCO (1988). River inputs to ocean systems: Status and recommendations for research (p. 25). UNESCO Technical Papers inMarine Science 55, Final report of SCOR Working Group 46, Paris.Google Scholar
  67. Vinayachandran, P. N., & Mathew, S. (2003). Phytoplankton bloom in the Bay of Bengal during the northeast monsoon and its intensification by cyclones. Geophysical Research Letters, 30, 15–72.CrossRefGoogle Scholar
  68. Waggett, R. J., Tester, P. A., & Place, A. R. (2008). Anti-grazing properties of the toxic dinoflagellate Karlodinium veneficum during predator–prey interactions with the copepod Acartia tonsa. Marine Ecology Progress Series, 366, 31–42.CrossRefGoogle Scholar
  69. Yin, K., Harrison, P. J., Chen, J., Huang, W., & Qian, P. (1999). Red tides during spring 1998 in Hong Kong: Is El Niño responsible? Marine Ecology Progress Series, 187, 289–294.CrossRefGoogle Scholar
  70. Yin, K., Song, X., Liu, S., Kan, J., & Qian, P. (2008). Is inorganic nutrient enrichment a driving force for the formation of red tides? A case study of the dinoflagellate Scrippsiella trochoidea in an embayment. Harmful Algae, 8, 54–59.CrossRefGoogle Scholar
  71. Zhuo-Ping, C., Wei-Wei, H., Min, A., & Shun-Shan, D. (2009). Coupled effects of irradiance and iron on the growth of a harmful algal bloom-causing microalga Scrippsiella trochoidea. Acta Ecologica Sinica, 29, 297–301.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Ravidas Krishna Naik
    • 1
  • Sahana Hegde
    • 1
  • Arga Chandrashekar Anil
    • 1
  1. 1.National Institute of Oceanography, Council of Scientific and Industrial ResearchDona PaulaIndia

Personalised recommendations