Advertisement

Environmental Monitoring and Assessment

, Volume 181, Issue 1–4, pp 165–173 | Cite as

Mass balance in the monitoring of pollutants in tidal rivers of the Guanabara Bay, Rio de Janeiro, Brazil

  • Raquel Pinhão da Silveira
  • Ana Paula de Castro Rodrigues
  • Ricardo Erthal Santelli
  • Renato Campello Cordeiro
  • Edison Dausacker Bidone
Article

Abstract

This study addressed the identification and monitoring of pollution sources of terrestrial origin in rivers (domestic sewage and industrial effluents) and critical fluvial segments in highly polluted environments under tidal influence (mixing marine and continental sources) from Guanabara Bay Basin, Rio de Janeiro, Brazil. The mass balance of contaminants was determined in conditions of continuous flow (low tide) during dry season (lower dilution capability). The results allowed the evaluation of the potential of contaminant mass generation by the different river segments and the estimation of their natural and anthropogenic components. The water quality of Iguaçú and Sarapuí Rivers were evaluated for metals and biochemical oxygen demand. The method gave an excellent response, including the possibility of sources identification and contaminated river segments ranking. The approach also offers fast execution and data interpretation, being highly efficient.

Keywords

Estuarine systems River pollution Mass balance Natural and anthropogenic components Metals 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baptista-Neto, J. A., Gingele, F. X., Leipe, T., & Brehme, I. (2006). Spatial distribution of heavy metals in surficial sediments from Guanabara Bay: Rio de Janeiro, Brazil. Environmental Geology, 49, 1051–1063.CrossRefGoogle Scholar
  2. Bidone, E. D., & Lacerda, L. D. (2004). The use of DPSIR framework to evaluate sustainability in coastal areas. Case study: Guanabara Bay basin, Rio de Janeiro, Brazil. Regional Environmental Change, 4(1), 5–16.CrossRefGoogle Scholar
  3. Bidone, E. D., Maddock, J. E. L., & Castilhos, Z. C. (2002). A practical method to internalize environmental impacts into cost–benefit analysis. Environmental Practice, 4, 31–35.CrossRefGoogle Scholar
  4. Bidone, E. D., Silva, E. V., Filho, T., Guerra, L. V., & Barroso, A. R. C. (1999). Natural and cultural nutrient levels in rivers of small coastal watersheds, S-Se, Brazil. In: B. A. Knoppers, E. D. Bidone, & J. J. Abrão. (Eds.), Environmental geochemistry of coastal lagoon systems of Rio de Janeiro, Brazil (pp. 89–104). EDUFF.Google Scholar
  5. Boyacioglu, H., & Boyacioglu, H. (2007). Surface water quality assessment by environmetric methods. Environmental Monitoring and Assessment. doi: 10.1007/s10661-006-9482-4.Google Scholar
  6. Carvalho, M. F. B. (2001). O modelo AVS contribuindo na avaliação do grau de remobilização e da biodisponibilidae de metais em ecossistemas aquáticos. Niterói, 2001. 221 f. Tese (doutorado) Geociências, Universidade Federal Fluminense.Google Scholar
  7. Cordeiro, L. G. M. S. (2006). Esteróis como marcadores moleculares da contaminação fecal no sistema estuarino Iguaçu–Sarapuí, noroeste da Baía de Guanabara (RJ). Rio de Janeiro, 2006. 169 f. Dissertação (mestrado) Química, Pontifícia Universidade Católica.Google Scholar
  8. Cunha, K. D., & Leite, C. V. B. (2002). Metal trace analysis by PIXE and PDMS techniques. Nuclear Instruments and Methods in Physics Research, 187, 401–407.CrossRefGoogle Scholar
  9. FEEMA (2000). Qualidade de Água da Baía de Guanabara. Estatística Básica 1990/1999. Rio de Janeiro: Secretaria de Estado de Meio Ambiente e Desenvolvimento Sustentável.Google Scholar
  10. Hatje, V., Bidone, E. D., & Maddock, J. L. (1998). Estimation of the natural and anthropogenic components of heavy metal fluxes in fresh water Sinos River, Rio Grande do Sul State, South Brazil. Environmental Technology, 19, 483–487.CrossRefGoogle Scholar
  11. IADB. Inter-American Development Bank (2006). Decontamination program guanabara bay (BR-0072) (p. 39). Project Completion Report (PCR), IADB, Brasília, DF, Brazil.Google Scholar
  12. IBG (2006) Os Rios. Instituto Baía de Guanabara. http://www.portalbaiadeguanabara.org.br/portal/a_osrios.asp. Accessed 03 November 2006.
  13. JICA. Japan Internacional Cooperation Agency (2003). The study on management and improvement of the environmental conditions of guanabara bay of Rio de Janeiro, The Federative Republic of Brazil (p. 412). Rio de Janeiro,RJ: JICA and the State Secretariat of Environment and Urban Developmen.Google Scholar
  14. Kjerfve, B., Lacerda, D., & Dias, G. T. M. (2001). Baia de Guanabara, Rio De Janeiro, Brazil. In: U. Seeliger & B. Kjerfve, (Eds.), Coastal marine ecosystems of Latin America: Ecological studies (pp. 107–117). Berlin: Springer.Google Scholar
  15. Knoppers, B. A., Bidone, E. D., & Abrão, J. J. (1999). Environmental geochemistry of coastal lagoon systems of Rio de Janeiro. Brazil: EDUFF.Google Scholar
  16. Laybauer, L., & Bidone, E. D. (1998). Mass balance estimation of natural and anthropogenic heavy metal fluxes in streams near the Camaquã copper mines, Rio Grande do Sul, Brazil. In: J. C. Wasserman, E. V. Silva-Filho, & R. C. Villas-Boas (Eds.), Environmental geochemistry in the tropics (pp. 127–137). Berlin: Springer.CrossRefGoogle Scholar
  17. Masson, M., Blanc, G., & Schäfer, J. (2006). Geochemical signals and source contributions to heavy metal (Cd, Zn, Pb, Cu) f luxes into the Gironde Estuary via its major tributaries. Science of the Total Environment, 370, 133–146.CrossRefGoogle Scholar
  18. Molisani, M. M., Marins, R. V., Paraquetti, H. H. M., Bidone, E. D., & Lacerda, L. D. (2004). Environmental changes in Sepetiba Bay, SE Brazil. Regional Environmental Change, 4(1), 17–27.CrossRefGoogle Scholar
  19. Molisani, M. M., Kjerfve, B., Barreto, R., & Lacerda, L. D. (2007). Land–sea mercury transport through a modified watershed, SE Brazil. Water resarch, 41, 1929–1938.CrossRefGoogle Scholar
  20. Monbet, P. (2004). Dissolved and particulate fluxes of copper through the Morlaix river estuary (Brittany, France): Mass balance in a small estuary with strong agricultural catchment. Marine Pollution Bulletin, 48, 78–86.CrossRefGoogle Scholar
  21. Monbet, P. (2006). Mass balance of lead through a small macrotidal estuary: The Morlaix River estuary (Brittany, France). Marine Chemistry, 98, 59–80.CrossRefGoogle Scholar
  22. Oliveira, R. R., Bressan, F. A., & Silva-Filho, E. V. (1998). Contaminação por metais pesados no sedimento e em compartimentos bióticos de manguezais da baía de Guanabara, RJ. In: Simpósio De Ecossistemas Brasileiros (pp. 30–37).Google Scholar
  23. Rangel, C. M. A. (2006). O aporte de metais pesados e hidrocarbonetos poli-aromáticos (HPAS) na baía de Guanabara através do rio Estrela—RJ (62p.). Dissertação (mestrado) Geologia e Geofísica Marinha, Universidade Federal Fluminense.Google Scholar
  24. Rebello, A. L., Haekel, W., Moreira, I., & Santelli, R. (1986). The fate of heavy metals in an estuarine tropical system. Marine Chemistry, 18, 215–225.CrossRefGoogle Scholar
  25. Salomons, W., & Förstner, U. (1984). Metals in the hydrocycle. Berlin: Springer.Google Scholar
  26. SERLA. Fundação Superintendência Estadual de Rios e Lagoas (2005). Plano diretor de recursos hídricos da região hidrográfica da Baía de Guanabara. Rio de Janeiro, RJ: SERLA.Google Scholar
  27. Souza, C. M. M., Pestana, M. H., & Lacerda, L. D. (1986). Geochimical partitioning of heavy metals in sediments of three estuaries along the coast of Rio de Janeiro (Brazil). The Science of the Total Environment, 58, 63–72.CrossRefGoogle Scholar
  28. Tchobanoglous, G., & Schroeder, E. D. (1985). Water quality. California: Addison Wesley.Google Scholar
  29. Warren, C., Mackay, D., Whelan, M., & Fox, K. (2005). Mass balance modelling of contaminants in river basins: A flexible matrix approach. Chemosphere, 61, 1458–1467.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Raquel Pinhão da Silveira
    • 1
  • Ana Paula de Castro Rodrigues
    • 1
  • Ricardo Erthal Santelli
    • 1
  • Renato Campello Cordeiro
    • 1
  • Edison Dausacker Bidone
    • 1
  1. 1.Geochemistry DepartmentUFFNiteróiBrazil

Personalised recommendations