Environmental Monitoring and Assessment

, Volume 181, Issue 1–4, pp 83–99 | Cite as

Short-term responses of soil chemistry, needle macronutrients and tree growth to clinker dust and fertiliser in a stand of Scots pine

  • Jaan Klõšeiko
  • Katri Ots
  • Tatjana Kuznetsova
  • Henn Pärn
  • Malle Mandre


Waste management of clinker dust by spreading it on forest soil was studied in a 25-year-old Scots pine stand on acidic sandy soil. Clinker dust (0.5 kg m − 2), fertiliser (N, P, K, Mg, 0.05 kg m − 2; N 190 kg ha − 1) and untreated soil were applied on 120-m2 plots in four replicates. The fertiliser was included to confirm the nutrient limitation in the stand. Clinker dust increased the soil pH by 1.2 units relative to the pH of 4.6 in the untreated soil by the second year. Soil K and Mg concentrations were larger in the dust and fertiliser treatments. Nutrient diagnostics indicated that needles of untreated trees were deficient in N and K. Fertiliser treatment indicated that the growth of trees was limited by N, since the fertiliser tended to increase needle K, N, N/P, needle dry mass and diameters of stem and shoots. By an auxiliary dataset, no effects of the dust and fertiliser on possible excess of the micronutrient Mn were observed. Clinker dust increased needle K concentration, but due to the N limitation, there was no increase in the growth of stems, branches, shoots and needles. It was concluded that in plots of 120 m2 application of clinker dust at a rate of 0.5 kg m − 2 was safe for the 21-year-old Scots pine stand in this trial on an acid nutrient-poor sandy soil during 4 years after the treatment.


Growth Liming Manganese Nutrient limitation Waste 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. AOAC (1990). Official methods of analysis of the association of official analytical chemists (15th ed.). Washington DC: Association of Official Analytical Chemists.Google Scholar
  2. Armolaitis, K. E., Vaichis, M. V., Kubiartavichene, L. V., & Raguotis, A. D. (1996). Influence of cement-mill emission on physicochemical properties of forest soils near the mill. Eurasian Soil Science, 28, 212–220.Google Scholar
  3. Berg, B., & McClaugherty, C. (2003). Plant litter: Decomposition, humus formation, carbon sequestration. Heidelberg: Springer.Google Scholar
  4. Brække, F. H., & Salih, N. (2002). Reliability of foliar analyses of Norway spruce stands in a Nordic gradient. Silva Fennica, 36, 489–504.Google Scholar
  5. Derome, J. (1985). Forest liming as a means of counteracting the effects of acid rain. In E. Klimo & Šály R. (Eds.), Air pollution and stability of coniferous forest ecosystems. Proc. of the Symposium, Ostavice, Czechoslovakia, 1–5 October 1984 (pp. 53–66). Brno: University of Agriculture, Institute of Forest Ecology.Google Scholar
  6. Derome, J., Kukkola, M., & Mälkonen, E. (1986). Forest liming on mineral soils. Results of Finnish experiments. Solna: National Swedish Environmental Protection Board.Google Scholar
  7. Dinel, H., Paré, T., Schnitzer, M., & Pelzer, N. (2000). Direct land application of cement kiln dust- and lime-sanitized biosolids: Extractability of trace metals and organic matter quality. Geoderma, 96, 307–320.CrossRefGoogle Scholar
  8. Doncaster, C. P., & Davey, A. J. H. (2007). Analysis of variance and covariance: How to choose and construct models for the life sciences. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  9. Duchesne, J., & Reardon, E. J. (1998). Determining controls on element concentrations in cement kiln dust leachate. Waste Management, 18, 339–350.CrossRefGoogle Scholar
  10. EPA (2008). Materials characterization paper. In support of the advanced notice of proposed rulemaking—identification of nonhazardous materials that are solid waste. Cement kiln dust (CKD). www.epa.gov/epawaste/nonhaz/pdfs/kilndust.pdf. Accessed 31 March 2010.
  11. Eriksson, H. M., Nilsson, T., & Nordin, A. (1998). Early effects of lime and hardened and non-hardened ashes on pH and electrical conductivity of the forest floor, and relations to some ash and lime qualities. Scandinavian Journal of Forest Research, Suppl. 2, 56–66.Google Scholar
  12. Fife, D. N., & Nambiar, E. K. S. (1984). Movement of nutrients in radiata pine needles in relation to the growth of shoots. Annals of Botany, 54, 303–314.Google Scholar
  13. Führs, H., Moritz, H., Molina, L. E. B., Heintz, D., Van Dorsselaer, A., Braun, H.-P., et al. (2008). Early manganese-toxicity response in Vigna unguiculata L. – a proteomic and transcriptomic study. Proteomics, 8, 149–159.CrossRefGoogle Scholar
  14. Fujishima, A., & Zhang, X. (2006). Titanium dioxide photocatalysis: Present situation and future approaches. Comptes Rendus Chimie, 9, 750–760.CrossRefGoogle Scholar
  15. Geibe, C., Holmström, S. J. M., Van Hees, P. A. W., & Lundström, U. S. (2003). Impact of lime and ash applications on soil solution chemistry of an acidified podzolic soil. Water, Air and Soil Pollution: Focus, 3, 77–96.CrossRefGoogle Scholar
  16. González, A., Steffen, K. L., & Lynch, J. P. (1998). Light and excess manganese. Implications for oxidative stress in common bean. Plant Physiology, 118, 493–504.CrossRefGoogle Scholar
  17. Goodarzi, F. (2009). Environmental assessment of bottom ash from Canadian coal-fired power plants. The Open Environmental & Biological Monitoring Journal, 2, 1–10.CrossRefGoogle Scholar
  18. Grønflaten, L. K., Amundsen, L., Frank, J., & Steinnes, E. (2005). Influence of liming and vitality fertilization on trace element concentrations in Scots pine forest soil and plants. Forest Ecology and Management, 213, 261–272.CrossRefGoogle Scholar
  19. Gülpen, M., Türk, S., & Fink, S. (1993). Der Effect von Kalkung und Magnesiumdüngung auf die Aufnahme, den Transport und die chemische Bindungsform von Calcium und Magnesium in Koniferen [The effect of liming and Mg fertilisation on the availability, transport and chemical bonding forms of Mg and Ca in conifers]. In F. Horsch, W. G. Filby, N. Fund, S. Gross, G. Kändler, & W. Reinhardt (Eds.), Statuskolloqium des PEF vom 9. bis 11. März 1993 im Kernforschungszentrum Karlsruhe (pp. 195–207). Karlsruhe.Google Scholar
  20. Haapala, H., Goltsova, N., & Lodenius, M. (2001). Heavy metal solubility in podzolic soils exposed to the alkalizing effect of air pollution. Environmental Pollution, 115, 33–41.CrossRefGoogle Scholar
  21. Hallik, O. (1965). Happeliste muldade lupjamine Eesti NSV-s [Liming of acid soils in Estonia]. Tallinn: Eesti Raamat (in Estonian).Google Scholar
  22. Helmisaari, H.-S., Saarsalmi, A., & Kukkola, M. (2009). Effects of wood ash and nitrogen fertilization on fine root biomass and soil and foliage nutrients in a Norway spruce stand in Finland. Plant and Soil, 314, 121–132.CrossRefGoogle Scholar
  23. IUSS Working Group WRB (2006). World reference base for soil resources 2006. World Soil Resources Reports No. 103, Rome: FAO.Google Scholar
  24. Jalkanen, L., Mäkinen, A., Häsänen, E., & Juhanoja, J. (2000). The effect of large anthropogenic particulate emissions on atmospheric aerosols, deposition and bioindicators in the eastern Gulf of Finland region. Science of the Total Environment, 262, 123–136.CrossRefGoogle Scholar
  25. Järvan, M. (2005). Põldude lupjamine. Mullakaitse ABC [Liming of fields. ABC of soil protection]. Saku: Eesti Maaviljeluse Instituut. http://www.eria.ee/public/files/Poldude_lupjamine.doc. Accessed 17 February 2010 (in Estonian).
  26. Kirkham, M. B. (2006). Cadmium in plants on polluted soils: Effects of soil factors, hyperaccumulation, and amendments. Geoderma, 137, 19–32.CrossRefGoogle Scholar
  27. Klimantavičiūtė, M. G., Virbalytė, D., Pakštas, V., Juškėnas, R., & Pigaga, A. (2005). Interaction of heavy metal ions with cement kiln dust. Ekologija, 1, 31–36.Google Scholar
  28. Kogelmann, W. J., & Sharpe, W. E. (2006). Soil acidity and manganese in declining and nondeclining sugar maple stands in Pennsylvania. Journal of Environmental Quality, 35, 433–441.CrossRefGoogle Scholar
  29. Kreutzer, K. (1995). Effects of forest liming on soil processes. Plant and Soil, 168, 447–470.CrossRefGoogle Scholar
  30. Kunda Nordic (2007a). Sustainability report. Heidelberg-Cement Northern Europe. http://www.heidelbergcement.com/NR/rdonlyres/19FF5C90–7238–45B1-A722-C353B0518F73/0/Kunda_ENG_0526.pdf. Accessed 15 February 2010.
  31. Kunda Nordic (2007b). Tsemendi tootmisprotsess [Manufacturing process of cement]. http://www.heidelbergcement.com/ee/et/kunda/kasulikku_teavet/Tootmisprotsess.htm. Accessed 05 April 2010 (in Estonian).
  32. Kupcinskiene, E., & Huttunen, S. (2005). Long-term evaluation of the needle surface wax condition of Pinus sylvestris around different industries in Lithuania. Environmental Pollution, 137, 610–618.CrossRefGoogle Scholar
  33. Lavola, A., Aphalo, P. J., Lahti, M., & Julkunen-Tiitto, R. (2003). Nutrient availability and the effect of increasing UV-B radiation on secondary plant compounds in Scots pine. Environmental and Experimental Botany, 49, 49–60.CrossRefGoogle Scholar
  34. Lehndorff, E., & Schwark, L. (2010). Biomonitoring of air quality in the Cologne Conurbation using pine needles as a passive sampler – Part III: Major and trace elements. Atmospheric Environment, 44, 2822–2829.CrossRefGoogle Scholar
  35. Liblik, V., & Karu, H. (2005). Piire ületav õhusaaste [Air pollution beyond borders]. Tallinn: Keskkonnaministeerium (in Estonian).Google Scholar
  36. Loide, V. (2004). About the effect of the contents and ratios of soil’s available calcium, potassium and magnesium in liming of acid soils. Agronomy Research, 2, 71–82.Google Scholar
  37. Lõhmus, E. (2004). Eesti metsakasvukohatüübid [Forest site types of Estonia]. Tartu: Eesti Loodusfoto (in Estonian).Google Scholar
  38. Luyssaert, S., Sulkava, M., Raitio, H., & Hollmén, J. (2004). Evaluation of forest nutrition based on large-scale foliar surveys: Are nutrition profiles the way of the future? Journal of Environmental Monitoring, 6, 160–167.CrossRefGoogle Scholar
  39. Mandre, M., Klõšeiko, J., Ots, K., & Tuulmets, L. (1999). Changes in phytomass and nutrient partitioning in young conifers in extreme alkaline growth conditions. Environmental Pollution, 105, 209–220.CrossRefGoogle Scholar
  40. Mandre, M., Pärn, H., & Ots, K. (2006). Short-term effects of wood ash on the soil and the lignin concentration and growth of Pinus sylvestris L. Forest Ecology and Management, 223, 349–357.CrossRefGoogle Scholar
  41. Merilä, P., & Derome, J. (2008). Relationships between needle nutrient composition in Scots pine and Norway spruce stands and the respective concentrations in the organic layer and in percolation water. Boreal Environment Research, 13(B), 35–47.Google Scholar
  42. Ministry of Agriculture (2006). Eesti maaelu arengukava 2007–2013 [Estonian strategy on development of rural areas for 2007–2013]. www.valitsus.ee/failid/MAK_2007_2013_08_02_2007_1_.pdf. Accessed 17 February 2010 (in Estonian).
  43. Ministry of Environment (2005). Pinnases ja põhjavees ohtlike ainete sisalduse piirnormid [Limits of hazardous substances in soil and groundwater]. https://www.riigiteataja.ee/ert/act.jsp?id=961568. Accessed 24 November 2009 (in Estonian).
  44. Ministry of Environment (2009). Metsa korraldamise juhendi lisad [Appendices to the instructions for forest inventory]. http://www.riigiteataja.ee/ert/get-attachment.jsp?id=12763817. Accessed 09 March 2010 (in Estonian).
  45. Narracci, M., Cavallo, R. A., Acquaviva, M. I., Prato, E., & Biandolino, F. (2009). A test battery approach for ecotoxicological characterization of Mar Piccolo sediments in Taranto (Ionian Sea, Southern Italy). Environmental Monitoring and Assessment, 148, 307–314.CrossRefGoogle Scholar
  46. Nilsen, P. (2001). Fertilization experiments on forest mineral soils: A review of the Norwegian results. Scandinavian Journal of Forest Research, 16, 541–554.CrossRefGoogle Scholar
  47. Palosuo, T., Liski, J., Trofymow, J. A., & Titus, B. D. (2005). Litter decomposition affected by climate and litter quality—Testing the Yasso model with litterbag data from the Canadian intersite decomposition experiment. Ecological Modelling, 189, 183–198.CrossRefGoogle Scholar
  48. Pettersson, F., & Högbom, L. (2004). Long-term growth effects following forest nitrogen fertilization in Pinus sylvestris and Picea abies stands in Sweden. Scandinavian Journal of Forest Research, 19, 339–347.CrossRefGoogle Scholar
  49. Pikk, J., & Henno, O. (1994). Lupjamiskatsete tulemus rabastuval nõrgkivinõmmel [The result of liming experiment on a hardpan heath]. Eesti Mets, 1, 15–16 (in Estonian).Google Scholar
  50. Pikk, J., Kask, R., Kuusepuu, T., & Peterson, P. (2004). Kasvutingimuste mõju hariliku männi (Pinus sylvestris L.) puiduomadustele [The effect of growth conditions on Scots pine (Pinus sylvestris L.) wood properties]. Metsanduslikud Uurimused/Forestry Studies, 40, 187–197 (in Estonian).Google Scholar
  51. Pikk, J., Seemen, H., & Peterson, P. (2001). Pohlamännikute juurdekasvu dünaamika toitumistingimuste pikaajalisel mõjutamisel mineraalväetistega [The growth increment dynamics of Scots pine stands on the Vaccinium vitis-idaea site type under long-term stimulation with mineral fertilizers]. Metsanduslikud Uurimused/Forestry Studies, 35, 8–18 (in Estonian).Google Scholar
  52. Polle, A., Chakrabarti, K., Chakrabarti, S., Seifert, F., Schramel, P., & Rennenberg, H. (1992). Antioxidants and manganese deficiency in needles of Norway spruce (Picea abies L.) trees. Plant Physiology, 99, 1084–1089.CrossRefGoogle Scholar
  53. Rasa, K., Peltovuori, T., & Hartikainen, H. (2006). Effects of de-icing chemicals sodium chloride and potassium formate on cadmium solubility in a coarse mineral soil. Science of the Total Environment, 366, 819–825.CrossRefGoogle Scholar
  54. Rauk, J. (1995). Bioproductivity. In M. Mandre (Ed.), Dust pollution and forest ecosystems. A study of conifers in an alkaline environment. Publication 3 (pp. 119–123). Tallinn: Institute of Ecology.Google Scholar
  55. Römbke, J., Moser, T., & Moser, H. (2009). Ecotoxicological characterisation of 12 incineration ashes using 6 laboratory tests. Waste Management, 29, 2475–2482.CrossRefGoogle Scholar
  56. Røsberg, I., Frank, J., & Stuanes, A. O. (2006). Effects of liming and fertilization on tree growth and nutrient cycling in a Scots pine ecosystem in Norway. Forest Ecology and Management, 237, 191–207.CrossRefGoogle Scholar
  57. Saarsalmi, A., Derome, J., & Levula, T. (2005). Effect of wood ash fertilization on stand growth, soil, water and needle chemistry, and berry yields of lingonberry (Vaccinium vitis-idaea L.) in Scots pine stand in Finland. Metsanduslikud Uurimused/Forestry Studies, 42, 13–33.Google Scholar
  58. Saarsalmi, A., & Mälkönen, E. (2001). Forest fertilization research in Finland: A literature review. Scandinavian Journal of Forest Research, 16, 514–535.CrossRefGoogle Scholar
  59. Sauer, E., Ranger, J., Lemoine, B., & Gelpe, J. (1992). Micronutrient distribution in 16-year-old maritime pine. Tree Physiology, 10, 307–316.Google Scholar
  60. Siddique, R. (2006). Utilization of cement kiln dust (CKD) in cement mortar and concrete—an overview. Resources, Conservation and Recycling, 48, 315–338.CrossRefGoogle Scholar
  61. Sikström, U. (1997). Effects of low-dose liming and nitrogen fertilization on stemwood growth and needle properties of Picea abies and Pinus sylvestris. Forest Ecology and Management, 95, 261–274.CrossRefGoogle Scholar
  62. St. Clair, S. B., & Lynch, J. P. (2005). Element accumulation patterns of deciduous and evergreen tree seedlings on acid soils: Implications for sensitivity to manganese toxicity. Tree Physiology, 25, 85–92.Google Scholar
  63. Steenari, B.-M., & Lindqvist, O. (1997). Stabilisation of biofuel ashes for recycling to forest soil. Biomass and Bioenergy, 13, 39–50.CrossRefGoogle Scholar
  64. Stravinskienė, V., & Erlickytė-Marčiukaitienė, R. (2009). Scots pine (Pinus sylvestris L.) radial growth dynamics in forest stands in the vicinity of “Akmenes Cementas” plant. Journal of Environmental Engineering and Landscape Management, 17, 140–147.CrossRefGoogle Scholar
  65. Tabatabai, M. A. (1974). A rapid method for determination of sulfate in water samples. Environmental Letters, 7, 237–243.CrossRefGoogle Scholar
  66. Tang, C., Raphael, C., Rengel, Z., & Bowden, J. W. (2000). Understanding subsoil acidification: Effect of nitrogen transformation and nitrate leaching. Australian Journal of Soil Research, 38, 837–849.CrossRefGoogle Scholar
  67. Terasmaa, T., & Pikk, J. (1995). Liming with powdered oil-shale ash in a heavily damaged forest ecosystem. II. The effect on forest condition in a pine stand. Proceedings of the Estonian Academy of Sciences. Biology. Ecology, 5, 77–84.Google Scholar
  68. Terasmaa, T., & Sepp, R. (1994). Liming with powdered oil-shale ash in a heavily damaged forest ecosystem. I. The effect on forest soil in a pine stand. Proceedings of the Estonian Academy of Sciences. Biology. Ecology, 4, 101–108.Google Scholar
  69. Tervahattu, H., Lodenius, M., & Tulisalo, E. (2001). Effects of the reduction of cement plant pollution on the foliar and bark chemical composition of Scots pine. Boreal Environment Research, 6, 251–259.Google Scholar
  70. Todres, H. A., Mishulovich, A., & Ahmed, J. (1992). Cement Kiln dust management: Permeability. research and development bulletin RD103T. Skokie: Portland Cement Association.Google Scholar
  71. Valk, U., & Raid, L. (1994). Metsakultuuride ja noorendike väetamine [Fertilisation of forest plantations and young-growth]. Metsanduslikud Uurimused/Forestry Studies, 26, 58–66 (in Estonian).Google Scholar
  72. Varnagirytė-Kabašinskienė, I. (2008). Complex study of foliage nutrient status in ash fertilized Scots pine stands in Lithuania. Journal of Forest Science, 54, 195–206.Google Scholar
  73. Zhao, Z.-Q., Zhu, Y.-G., Li, H.-Y., Smith, S. E., & Smith, F. A. (2003). Effects of forms and rates of potassium fertilizers on cadmium uptake by two cultivars of spring wheat (Triticum aestivum, L.). Environment International, 29, 973–978.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Jaan Klõšeiko
    • 1
  • Katri Ots
    • 1
  • Tatjana Kuznetsova
    • 1
  • Henn Pärn
    • 1
  • Malle Mandre
    • 1
  1. 1.Department of Ecophysiology, Institute of Forestry and Rural EngineeringEstonian University of Life SciencesTallinnEstonia

Personalised recommendations