Advertisement

Environmental Monitoring and Assessment

, Volume 180, Issue 1–4, pp 573–588 | Cite as

Statistical analysis of PM10 concentrations at different locations in Malaysia

  • Nurulilyana Sansuddin
  • Nor Azam Ramli
  • Ahmad Shukri Yahaya
  • Noor Faizah Fitri MD Yusof
  • Nurul Adyani Ghazali
  • Wesam Ahmed Al Madhoun
Article

Abstract

Malaysia has experienced several haze events since the 1980s as a consequence of the transboundary movement of air pollutants emitted from forest fires and open burning activities. Hazy episodes can result from local activities and be categorized as “localized haze”. General probability distributions (i.e., gamma and log-normal) were chosen to analyze the PM10 concentrations data at two different types of locations in Malaysia: industrial (Johor Bahru and Nilai) and residential (Kota Kinabalu and Kuantan). These areas were chosen based on their frequently high PM10 concentration readings. The best models representing the areas were chosen based on their performance indicator values. The best distributions provided the probability of exceedances and the return period between the actual and predicted concentrations based on the threshold limit given by the Malaysian Ambient Air Quality Guidelines (24-h average of 150 μg/m3) for PM10 concentrations. The short-term prediction for PM10 exceedances in 14 days was obtained using the autoregressive model.

Keywords

Gamma distribution Log-normal distribution PM10 Autoregressive (AR) model 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abas, M. R., Oros, D. R., & Simoneit, B. R. T. (2004). Biomass burning as the main source of organic aerosol particulate matter in Malaysia during haze episodes. Chemosphere, 55, 1089–1095.CrossRefGoogle Scholar
  2. Abdel-Aziz, A., & Frey, H. C. (2003). Development of hourly probabilistic utility NOx emission inventories using time series techniques: part I—univariate approach. Atmospheric Environment, 37, 5379–5389.CrossRefGoogle Scholar
  3. Afroz, R., Hassan, M. N., & Ibrahim, N. A. (2003). Review air pollution and health impacts in Malaysia. Environmental Research, 92(2), 71–77.CrossRefGoogle Scholar
  4. Awang, M. B., Jaafar, A. B., Abdullah, A. M., Ismail, M. B., Hassan, M. N., Abdullah, R., et al. (2000). Air quality in Malaysia: Impacts, management issues and future challenges. Respiratory, 5, 183–196.Google Scholar
  5. Ballester, E. B., iValls, G. C., Carrasco-Rodriguez, J. L., Olivas, E. S., & Valle-Tascon, S. D. (2002). Effective 1-day ahead prediction of hourly surface ozone concentrations in Eastern Spain using linear models and neural networks. Ecological Modelling, 156(1), 27–41.CrossRefGoogle Scholar
  6. Box, G. E. P., & Jenkins, G. M. (1976). Time series analysis—Forecasting and control revised. San Francisco: Holden-Day Inc.Google Scholar
  7. Carmona, R. A. (2004). Statistical analysis of financial data in S-plus. U.S.A.: Springer.Google Scholar
  8. Comrie, A. C. (1997). Comparing neural network and regression models for RSPM forecasting. Journal of Air and Waste Management Association, 47, 513–529.Google Scholar
  9. Chatfield, C. (2004). The analysis of time series—An introduction (6th Edn.). Florida: Chapman & Hall/CRC.Google Scholar
  10. Chattopadhyay, G., & Chattopadhyay, S. (2009). Autoregressive forecast of monthly total ozone concentration—A neurocomputing approach. Computer and Geosciences, 35(9), 1925–1932.CrossRefGoogle Scholar
  11. Chelani, A. B., & Devotta, S. (2006). Air quality forecasting using a hybrid autoregressive and nonlinear model. Atmospheric Environment, 40, 1774–1780.CrossRefGoogle Scholar
  12. Christian, H., & Chrisian, H. (2002). Index forecasting and model selection. International Journal of Intelligent Systems in Accountly, Finance and Management, 11, 119–135.CrossRefGoogle Scholar
  13. Cooray, T. M. J. A. (2008). Applied time series analysis and forecasting. Oxford: Alpha Science International Ltd.Google Scholar
  14. Department of Environment (DoE), Malaysia (2002). Malaysia environmental quality report 2002. Kuala Lumpur: Department of Environment, Ministry of Sciences, Technology and the Environment, Malaysia.Google Scholar
  15. Department of Environment (DoE), Malaysia (2004). Malaysia environmental quality report 2004. Kuala Lumpur: Department of Environment, Ministry of Sciences, Technology and the Environment, Malaysia.Google Scholar
  16. Department of Environment (DoE), Malaysia (2008). Malaysia environmental quality report 2008. Kuala Lumpur: Department of Environment, Ministry of Sciences, Technology and the Environment, Malaysia.Google Scholar
  17. Evans, M., Hastings, N., & Peacock, B. (2000). Statistical distributions (3rd Edn.). New York: Wiley.Google Scholar
  18. Fitri, M. D. N. F., Ramli, N. A., Yahaya, A. S., Sansuddin, N., Ghazali, N. A., & AlMadhoun, W. (2009). Monsoonal differences and probability distribution of PM10 concentration. Environmental Monitoring Assessment, 163(1–4), 655–667.Google Scholar
  19. Fuller, D. O., & Murphy, K. (2006). The ENSO-fire dynamic in insular Southeast Asia. Climatic Change, 74(4), 435–455.CrossRefGoogle Scholar
  20. Ghazali, N. A., Ramli, N. A., Yahaya, A. S., Md Yusof, N. F. F., Sansuddin, N., & Al Madhoun, W. A. (2010). Transformation of nitrogen dioxide into ozone and prediction of ozone concentrations using multiple linear regression techniques. Environmental Monitoring Assessment, 165(1–4), 475–489.CrossRefGoogle Scholar
  21. Gilbert, O. R. (1987). Statistical method for environmental pollution monitoring. New York: Van Nostrand Reinhold Company Inc.Google Scholar
  22. Goyal, P., Chan, A. T., & Jaiswal, N. (2006). Statistical models for the prediction of respirable suspended particulate matter in urban cities. Atmospheric Environment, 40, 2068–2077.CrossRefGoogle Scholar
  23. Greene, W. H. (2003). Econometric analysis (5th Edn.). New Jersey: Prentice Hall.Google Scholar
  24. Hamilton, J. (1994). Time series analysis. New Jersey: Princeton University Press.Google Scholar
  25. Hyer, E. J., & Chew, B. N. (2010). Aerosol transport model evaluation of an extreme smoke episode in Southeast Asia. Atmospheric Environment, 44(11), 1422–1427.CrossRefGoogle Scholar
  26. Jalil, A., & Mahmud, S. F. (2009). Enviroment Kuznets curve for CO2 emissions—A cointegration analysis for China. Energy Policy, 37(12), 5167–5172.CrossRefGoogle Scholar
  27. Janacek, G. (2001). Practical time series. London: Arnold.Google Scholar
  28. Jarque, C. M., & Bera, A. K. (1980). Efficient tests for normality, heteroscedasticity and serial independence of regression residuals. Economics Letters, 6, 255–259.CrossRefGoogle Scholar
  29. Juneng, L., Latif, M. T., Tangang, F. T., & Mansor, H. (2009). Spatio-temporal characteristics of PM10 concentration across Malaysia. Atmospheric Environment, 43(30), 4584–4594.CrossRefGoogle Scholar
  30. Kim Oanh, N. T., Upadhyay, N., Zhuang, Y. H., Hao, Z. P., Murthy, D. V. S., Lestari, P., et al. (2006). Particulate air pollution in six Asian cities—Spatial and temporal distributions and associated sources. Atmospheric Environment, 40, 3367–3380.CrossRefGoogle Scholar
  31. Liang, W. M., Wei, H. Y., & Kuo, H. W. (2009). Association between daily mortality from respiratory and cardiovascular diseases and air pollution in Taiwan. Environmental Research, 109(1), 51–58.CrossRefGoogle Scholar
  32. Lu, H. C., & Fang, G. C. (2003). Predicting the exceedances of critical PM10 concentration—A case study in Taiwan. Atmospheric Environment, 37, 3491–3499.CrossRefGoogle Scholar
  33. Mage, D. T., & Ott, W. R. (1984). An evaluation of the method of fractiles moments and maximum likelihood for estimating parameters when sampling air quality data from a stationary lognormal distribution. Atmospheric Environment, 18, 163–171.CrossRefGoogle Scholar
  34. Malaysian Meteorological Department (2008) Official website of Malaysia Meteorological Department (MMD): General Climate of Malaysia. Available online at http://www.met.gov.my/english/education/climate/climated.html, accessed on 1 February 2008.
  35. Pillai, P. S., & Moorthy, K. K. (2001). Aerosol mass—Size distributions at a tropical coastal station. Response to mesoscale and synoptic processes. Atmospheric Environment, 35, 4099–4122.CrossRefGoogle Scholar
  36. Pillai, P. S., Babu, S. S., & Moorthy, K. K. (2002). A study of PM, PM10 and PM2.5 concentration at a tropical coastal station. Atmospheric Research, 61, 149–167.CrossRefGoogle Scholar
  37. Portnov, B. A., Dubnov, J., & Barchana, M. (2009). Studying the association between air pollution and lung cancer incidence in a large metropolitan area using a Kernel density function. Socio-Economic Planning Sciences, 43(3), 141–150.CrossRefGoogle Scholar
  38. Ramli, N. A., & Ibrahim, W. H. W. (2003). PM10 concentration measurements at four selected sites in Semenanjung Malaysia: A comparison between sites with different background. In Proceeding environment 2003, Pulau Pinang (pp. 236–238).Google Scholar
  39. Ramli, N. A., Wathern, P., Ibrahim, W. W. H., & Hamidi, A. A. (2001). Some observations on respirable particulate matter during 1997 haze event in Malaysia. In H. L. Koh, & Y. A. Hassan (Eds.), Proceeding of ecological and environmental modelling 2001, 3–4 September 2001 (pp. 226–234). USM Publisher. ISBN 983–861–245–6.Google Scholar
  40. Ruey, S. T. (2005). Analysis of financial time series (2nd Edn.). Hoboken: Wiley.Google Scholar
  41. Ryan, W. (1995). Forecasting severe ozone episodes in the Baltimore metropolitan area. Atmospheric Environment, 29, 2387–2398.CrossRefGoogle Scholar
  42. Sedek, J. N. M., Ramli, N. A., & Yahaya, A. S. (2006). Air quality predictions using lognormal distribution functions of particulate matter in Kuala Lumpur, Malaysia. Journal of Environmental Management, 7, 33–41.Google Scholar
  43. Singh, K. P., Bartolucci, A. A., & Bae, S. (2001). Mathematical modeling of environmental data. Journal of Mathematical and Computer Modeling, 33, 793–800.CrossRefGoogle Scholar
  44. Soleiman, A., Othman, M., Samah, A. A., Sulaiman, N. M., & Radojevic, M. (2003). The occurrence of haze in Malaysia—A case study in an urban industrial area. Pure and Applied Geophysics, 160, 221–238.CrossRefGoogle Scholar
  45. Wang, Y., & Zhang, Y. S. (2009). Air quality assessment by contingent valuation in Ji’nan, China. Journal of Environmental Management, 90(2), 1022–1029.CrossRefGoogle Scholar
  46. Wilks, D. (1995). Statistical methods in the atmospheric sciences—An introduction. New York: Academic.Google Scholar
  47. Yaffee, R. A., & McGee, M. (2000). Introduction to time series analysis and forecasting with applications of SAS and SPSS. New York: Academic.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Nurulilyana Sansuddin
    • 1
  • Nor Azam Ramli
    • 1
  • Ahmad Shukri Yahaya
    • 1
  • Noor Faizah Fitri MD Yusof
    • 1
  • Nurul Adyani Ghazali
    • 1
  • Wesam Ahmed Al Madhoun
    • 1
  1. 1.Clean Air Research Group, Environmental and Sustainable Development Section, School of Civil EngineeringUniversiti Sains MalaysiaNibong TebalMalaysia

Personalised recommendations