Environmental Monitoring and Assessment

, Volume 174, Issue 1–4, pp 91–106 | Cite as

One century of hydrological monitoring in two small catchments with different forest coverage

  • Manfred Stähli
  • Alexandre Badoux
  • Andreas Ludwig
  • Karl Steiner
  • Massimiliano Zappa
  • Christoph Hegg


Long-term data on precipitation and runoff are essential to draw firm conclusions about the behavior and trends of hydrological catchments that may be influenced by land use and climate change. Here the longest continuous runoff records from small catchments (<1 km2) in Switzerland (and possibly worldwide) are reported. The history of the hydrological monitoring in the Sperbel- and Rappengraben (Emmental) is summarized, and inherent uncertainties in the data arising from the operation of the gauges are described. The runoff stations operated safely for more than 90% of the summer months when most of the major flood events occurred. Nevertheless, the absolute values of peak runoff during the largest flood events are subject to considerable uncertainty. The observed differences in average, base, and peak runoff can only partly be attributed to the substantial differences in forest coverage. This treasure trove of data can be used in various ways, exemplified here with an analysis of the generalized extreme value distributions of the two catchments. These distributions, and hence flood return periods, have varied greatly in the course of one century, influenced by the occurrence of single extreme events. The data will be made publicly available for the further analysis of the mechanisms governing the runoff behavior of small catchments, as well as for testing stochastic and deterministic models.


Runoff Hydrology Small catchments Forest coverage Extreme value distribution 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alila, Y., Kuràs, P. K., Schnorbus, M., & Hudson, R. (2009). Forest and floods: A new paradigm sheds light on age-old controversies. Water Resources Research, 45, W08416. doi: 10.1029/2008WR007207.CrossRefGoogle Scholar
  2. Badoux, A. (2005). The influence of wind storm deforestation on the runoff generation at various scales in a torrential catchment (p. 125). PhD thesis, University of Bern.
  3. Badoux, A., Witzig, J., Germann, P. F., Kienholz, H., Lüscher, P., Weingartner, R., & Hegg, C. (2006). Investigations on the runoff generation at the profile and plot scales, Swiss Emmental. Hydrological Processes, 20(2), 377–394.CrossRefGoogle Scholar
  4. Bates, C. G., & Henry, A. J. (1928). Second phase of streamflow experiment at Wagon Wheel Gap, Colorado. Monthly Weather Review, 56(3), 79–85.CrossRefGoogle Scholar
  5. Bosch, J. M., & Hewlett, J. D. (1982). A review of catchment experiments to determine the effect of vegetation changes on water yield and evapotranspiration. Journal of Hydrology, 55, 3–23.CrossRefGoogle Scholar
  6. Bren, L., & Hopmans, P. (2007). Paired catchments observations on the water yield of mature eucalypt and immature radiata pine plantations in Victoria, Australia. Journal of Hydrology, 336, 416–429.CrossRefGoogle Scholar
  7. Brown, A. E., Zhang, L., McMahon, T. A., Western, A. W., & Vertessy, R. A. (2005). A review of paired catchment studies for determining changes in water yield resulting from alterations in vegetation. Journal of Hydrology, 310(1–4), 28–61.CrossRefGoogle Scholar
  8. Burger, H. (1934). Einfluss des Waldes auf den Stand der Gewässer; 2. Mitteilung; Der Wasserhaushalt im Sperbel- und Rappengraben von 1915/16 bis 1926/27. Mitteilungen der Schweizerischen Anstalt für das forstliche Versuchswesen, 18(2), 311–416.Google Scholar
  9. Burger, H. (1943). Einfluss des Waldes auf den Stand der Gewässer; 3. Mitteilung; Der Wasserhaushalt im Sperbel- und Rappengraben von 1927/28 bis 1941/42. Mitteilungen der Schweizerischen Anstalt für das forstliche Versuchswesen, 23(1), 167–222.Google Scholar
  10. Burger, H. (1954). Einfluss des Waldes auf den Stand der Gewässer; 5. Mitteilung; Der Wasserhaushalt im Sperbel- und Rappengraben von 1942/43 bis 1951/52. Mitteilungen der Schweizerischen Anstalt für das forstliche Versuchswesen, 31(1), 9–58.Google Scholar
  11. Coles, S. (2001). An introduction to the statistical modelling of extreme values. London: Springer.Google Scholar
  12. Douglass, J. E., & Hoover, M. D. (1988). History of Coweeta. In W. T. Swank, & D. A. Crossley Jr. (Eds.), Forest hydrology and ecology at Coweeta (pp. 17–31). New York: Springer.Google Scholar
  13. Engler, A. (1919). Einfluss des Waldes auf den Stand der Gewässer. Mitteilungen der Schweizerischen Anstalt für das forstliche Versuchswesen, 12, 1–626.Google Scholar
  14. Fahey, B. D., & Jackson, R. (1997). Hydrological impacts of converting native forests and grasslands to pine plantations, South Island, New Zealand. Agricultural and Forest Meteorology, 84, 69–82.CrossRefGoogle Scholar
  15. Ghezzi, C. (1926). Die Abflussverhältnisse des Rheins in Basel. Mitteilungen des Amtes für Wasserwirtschaft (Vol. 19). Bern.Google Scholar
  16. Goodrich, D. C., Faurés, J.-M., Woolhiser, D. A., Lane, L. J., & Sorooshian, S. (1995). Measurement and analysis of small-scale convective storm rainfall variability. Journal of Hydrology, 173, 283–308.CrossRefGoogle Scholar
  17. Gurtz, J., Baltensweiler, A., & Lang, H. (1999). Spatially distributed hydrotope-based modelling of evapotranspiration and runoff in mountainous basins. Hydrological Processes, 13(17), 2751–2768.CrossRefGoogle Scholar
  18. Gurtz, J., Zappa, M., Jasper, K., Lang, H., Verbunt, M., Badoux, A., & Vitvar, T. (2003). A comparative study in modelling runoff and its components in two mountainous catchments. Hydrological Processes, 17(2), 297–311.CrossRefGoogle Scholar
  19. Hibbert, A. R. (1967). Forest treatment effects on water yield. In W. E. Sopper, & H. W. Lull (Eds.), Forest Hydrology (pp. 527–543). Oxford: Pergamon.Google Scholar
  20. Hisdal, H., Stahl, K., Tallaksen, L. M., & Demuth, S. (2001). Have streamflow droughts in Europe become more severe or frequent? International Journal of Climatology, 21(3), 317–333.CrossRefGoogle Scholar
  21. Hornbeck, J. W., Martin, C. W., & Eagar, C. (1997). Summary of water yield experiments at Hubbard Brook Experiment Forest, New Hampshire. Canadian Journal of Forest Research, 27, 2043–2052.CrossRefGoogle Scholar
  22. Hurst, H. E., & Phillips, P. (1931). General description of the basin, meteorology, topography of the White Nile basin. The Nile basin (Vol. I). Cairo: Government Press.Google Scholar
  23. Jensen, A. J., & Johnsen, B. O. (1999). The functional relationship between peak spring floods and survival and growth of juvenile Atlantic Salmon (Salmo salar) and Brown Trout (Salmo trutta). Functional Ecology, 13(6), 778–785.CrossRefGoogle Scholar
  24. Kirchner, J. W. (2009). Catchments as simple dynamical systems: Catchment characterization, rainfall-runoff modeling, and doing hydrology backward. Water Resources Research, 45, W02429. doi: 10.1029/2008WR006912.CrossRefGoogle Scholar
  25. Landolt, E. (1869). Die Wasserverheerungen in der Schweiz im September und Oktober 1886. Schweizerische Zeitschrift für Forstwesen, 20(1), 1–9.Google Scholar
  26. Menzel, L., Lang, H., & Rohmann, M. (1999). Mean annual actual evaporation. In Hydrological atlas of Switzerland (chapter 4.1). Bern, Switzerland: Swiss Federal Office for the Environment FOEN.Google Scholar
  27. Penman, H. L. (1959). Notes on the water balance of the Sperbelgraben and Rappengraben. Mitteilungen der Schweizerischen Anstalt für das forstliche Versuchswesen, 35(1), 99–109.Google Scholar
  28. Penman, H. L. (1963). Vegetation and hydrology. Farnham Royal: Commonwealth Agricultural Bureau.Google Scholar
  29. Rickenmann, D., & Koschni, A. (2010). Sediment loads due to fluvial transport and debris flows during the 2005 flood events in Switzerland. Hydrological Processes, 24, 993–1007.CrossRefGoogle Scholar
  30. Robinson, M., Cognard-Plancq, A.-L., Cosandey, C., David, J., Durand, P., Führer, H.-W., et al. (2003). Studies of the impact of forests on peak flows and baseflows: A European perspective. Forest Ecology and Management, 186, 85–97.CrossRefGoogle Scholar
  31. Schaefli, B., & Gupta, H. V. (2007). Do Nash values have value? Hydrological Processes, 21(15), 2075–2080.CrossRefGoogle Scholar
  32. Schmocker-Fackel, P., & Naef, F. (2010). Changes in flood frequencies in Switzerland since 1500. Hydrology and Earth System Sciences, 14(8), 1581–1594.CrossRefGoogle Scholar
  33. Soulsby, C., & Tetzlaff, D. (2008). Towards simple approaches for mean residence time estimation in ungaged basins using tracers and soil distributions. Journal of Hydrology, 363, 60–74.CrossRefGoogle Scholar
  34. Swank, W. T., Vose, J. M., & Elliott, K. J. (2001). Long-term hydrologic and water quality responses following commercial clearcutting of mixed hardwoods on a southern Appalachian catchment. Forest Ecology and Management, 143(1–3), 163–178.CrossRefGoogle Scholar
  35. Tetzlaff, D., McDonnell, J. J., Uhlenbrook, S., McGuire, K. J., Bogaart, P. W., Naef, F., et al. (2008). Conceptualizing catchment processes: Simply too complex? Hydrological Processes, 22, 1727–1730.CrossRefGoogle Scholar
  36. Tetzlaff, D., Seibert, J., McGuire, K. J., Laudon, H., Burns, D. A., Dunn, S. M., et al. (2009). How does landscape structure influence catchment transit time across different geomorphic provinces? Hydrological Processes, 23, 945–953.CrossRefGoogle Scholar
  37. Viviroli, D., Zappa, M., Gurtz, J., & Weingartner, R. (2009). An introduction to the hydrological modelling system PREVAH and its pre- and post-processing-tools. Environmental Modelling & Software, 24(10), 1209–1222.CrossRefGoogle Scholar
  38. Wullschleger, E. (1985). 100 Jahre Eidgenössische Anstalt für das forstliche Versuchswesen 1885–1985. Teil 1: DieGeschichte der EAFV. Mitteilungen der Eidgenössischen Anstalt für das forstliche Versuchswesen, 61, 1–630.Google Scholar
  39. Young, P. C. (2002). Advances in real-time flood forecasting. Philosophical Transactions of the Royal Society London, 360, 1433–1450.Google Scholar
  40. Zappa, M. (2008). Objective quantitative spatial verification of distributed snow cover simulations—An experiment for the whole of Switzerland. Hydrological Sciences Journal, 53(1), 179–191.CrossRefGoogle Scholar
  41. Zappa, M., & Kan, C. (2007). Extreme heat and runoff extremes in the Swiss Alps. Natural Hazards and Earth System Sciences, 7, 375–389.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Manfred Stähli
    • 1
  • Alexandre Badoux
    • 1
  • Andreas Ludwig
    • 1
  • Karl Steiner
    • 1
  • Massimiliano Zappa
    • 1
  • Christoph Hegg
    • 1
  1. 1.Mountain Hydrology and TorrentsSwiss Federal Research Institute WSLBirmensdorfSwitzerland

Personalised recommendations