Environmental Monitoring and Assessment

, Volume 178, Issue 1–4, pp 455–460 | Cite as

Sampling state and process variables on coral reefs

  • Roger H. Green
  • Brian A. McArdle
  • Robert van Woesik


Contemporary coral reefs are forced to survive through and recover from disturbances at a variety of spatial and temporal scales. Understanding disturbances in the context of ecological processes may lead to accurate predictive models of population trajectories. Most coral-reef studies and monitoring programs examine state variables, which include the percentage coverage of major benthic organisms, but few studies examine the key ecological processes that drive the state variables. Here we outline a sampling strategy that captures both state and process variables, at a spatial scale of tens of kilometers. Specifically, we are interested in (1) examining spatial and temporal patterns in coral population size-frequency distributions, (2) determining major population processes, including rates of recruitment and mortality, and (3) examining relationships between processes and state variables. Our effective sampling units are randomly selected 75 × 25 m stations, spaced approximately 250–500 m apart, representing a 103 m spatial scale. Stations are nested within sites, spaced approximately 2 km apart, representing a 104 m spatial scale. Three randomly selected 16 m2 quadrats placed in each station and marked for relocation are used to assess processes across time, while random belt-transects, re-randomized at each sampling event, are used to sample state variables. Both quadrats and belt-transects are effectively sub-samples from which we will derive estimates of means for each station at each sampling event. This nested sampling strategy allows us to determine critical stages in populations, examine population performance, and compare processes through disturbance events and across regions.


Coral reef Climate change Populations Sampling Processes 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Crowder, M. J., & Hand, D. J. (1990). Analysis of repeated measures. New York: Chapman and Hall.Google Scholar
  2. Diggle, P. J., Liang, K. Y., & Zeger, S. L. (1994). Analysis of longitudinal data. Oxford: Clarendon Press.Google Scholar
  3. Done, T. J. (1987). Simulation of the effects of Acanthaster planci on the population structure of massive corals in the genus Porites: Evidence of population resilience? Coral Reefs, 6, 75–90.CrossRefGoogle Scholar
  4. Gelman, A., Carlin, J., Stern, H., & Rubin, D. (2004). Bayesian data analysis, 2nd Edn. London: Chapman & Hall.Google Scholar
  5. Glynn, P. W. (1993). Coral reef bleaching: Ecological perspectives. Coral Reefs, 12, 1–17.CrossRefGoogle Scholar
  6. Green, R. H. (1993). Application of repeated measures designs in environmental impact and monitoring studies. Australian Journal of Ecology, 18, 81–98.CrossRefGoogle Scholar
  7. Green, R. H., & Smith S. R. (1997). Sample program design and environmental impact assessment on coral reefs. In J. B. C. Jackson (Ed.), Proceedings of the international coral reefs symposium.Google Scholar
  8. Hibino, K., & van Woesik, R. (2000). Spatial differences and seasonal changes of net carbonate accumulation on some corals reefs of the Ryukyu Islands, Japan. Journal of Experimental Marine Biology and Ecology, 252(1), 1–14.CrossRefGoogle Scholar
  9. Hoegh-Guldberg, O. (1999). Climate change, coral bleaching and the future of the world’s coral reefs. Marine and Freshwater Research, 50, 839–866.CrossRefGoogle Scholar
  10. Hoegh-Guldberg, O., Mumby, P. J., Hooten, A. J., Steneck, R. S., Greenfield, P., Gomez, E., et al. (2007). Coral reefs under rapid climate change and ocean acidification. Science, 318, 1737–1742.CrossRefGoogle Scholar
  11. IPCC (2007). Climate Change 2007: Synthesis report. In Core Writing Team, R. K. Pachauri, & A. Reisinger (Eds.), Contribution of working groups I, II and III to the fourth assessment report of the Intergovernmental Panel on Climate Change (104 pp.). Geneva, Switzerland: IPCC.Google Scholar
  12. Jury, C. P., Whitehead, R. F., & Smant, A. M. (2010). Effects of variations in carbonate chemistry on calcification rates of Madracis auretenra (=Madracis mirabilis sensu Wells, 1973): Bicarbonate concentrations best predict calcification rates. Global Change Biology, 16, 1632–1644.CrossRefGoogle Scholar
  13. Kleypas, J. A., Buddemeier, R. W., Archer, D., Gattuso, J.-P., Langdon, C., & Opdyke, B. N. (1999). Geochemical consequences of increased atmospheric CO2 on coral reefs. Science, 284, 118–120.CrossRefGoogle Scholar
  14. Littell, R. C., Milliken, G. A., Stroup, W. W., Wolfinger, R. D., & Schabenberger, O. (2006). SAS for mixed models, 2nd Edn. Cary: SAS Institute Inc.Google Scholar
  15. Loya, Y., Sakai, K., Yamazato, K., Nakano, Y., Sambali, H., & van Woesik, R. (2001). Coral bleaching: The winners and the losers. Ecology Letters, 4, 122–131.CrossRefGoogle Scholar
  16. McClanahan, T. M., Maina, J., Moothien-Pillay, R., & Baker, A. C. (2005). Effects of geography, taxa, water flow, and temperature variation on coral bleaching intensity in Mauritius. Marine Ecology Progress Series, 298, 131–142.CrossRefGoogle Scholar
  17. Mumby, P. J., Dahlgren, C. P., Harborne, A. R., Kappel, C. V., Micheli, F., Brumbaugh, D. R., et al. (2006). Fishing, trophic cascades, and the process of grazing on coral reefs. Science, 311, 98–101.CrossRefGoogle Scholar
  18. Ries, J. B., Cohen, A. L., & McCorkle, D. C. (2010). A nonlinear calcification response to CO2-induced ocean acidification by the coral Oculina arbuscula. Coral Reefs, 29, 661–674.CrossRefGoogle Scholar
  19. Roth, L., Koksal, S., & van Woesik, R. (2010). Effects of thermal stress on key processes driving coral population dynamics. Marine Ecology Progress Series, 411, 73–87.CrossRefGoogle Scholar
  20. Thompson, D., & van Woesik, R. (2009). Corals escape bleaching in regions that recently and historically experienced frequent thermal stress. Proceedings of the Royal Society B, 276(1669), 2893–2901.CrossRefGoogle Scholar
  21. van Woesik, R. (2002). Processes regulating coral communities. Comments on Theoretical Biology, 7, 201–214.CrossRefGoogle Scholar
  22. Wagner, D., Mielbrecht, E., van Woesik, R. (2008). Application of landscape ecology to spatio-temporal variance of water-quality parameters along the Florida Keys reef tract. Bulletin of Marine Science, 83(3), 553–569.Google Scholar
  23. Zvuloni, A., van Woesik, R., & Loya, Y. (2010). Diversity partitioning of stony corals across multiple spatial scales around Zanzibar Island, Tanzania. PLoS One, 5(3) e9941. doi: 10.1371/journal.pone.0009941.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Roger H. Green
    • 1
  • Brian A. McArdle
    • 2
  • Robert van Woesik
    • 3
  1. 1.University of Western OntarioLondonCanada
  2. 2.University of AucklandAucklandNew Zealand
  3. 3.Florida Institute of TechnologyMelbourneUSA

Personalised recommendations