Environmental Monitoring and Assessment

, Volume 178, Issue 1–4, pp 333–347 | Cite as

Human impact on wild firewood species in the Rural Andes community of Apillapampa, Bolivia

  • Evert Thomas
  • David Douterlungne
  • Ina Vandebroek
  • Frieke Heens
  • Paul Goetghebeur
  • Patrick Van Damme


Firewood is the basic fuel source in rural Bolivia. A study was conducted in an Andean village of subsistence farmers to investigate human impact on wild firewood species. A total of 114 different fuel species was inventoried during fieldtrips and transect sampling. Specific data on abundance and growth height of wild firewood species were collected in thirty-six transects of 50 ×2 m2. Information on fuel uses of plants was obtained from 13 local Quechua key participants. To appraise the impact of fuel harvest, the extraction impact value (EIV) index was developed. This index takes into account local participants’ appreciation of (1) decreasing plant abundance; (2) regeneration capacity of plants; (3) impact of root harvesting; and (4) quality of firewood. Results suggest that several (sub-)woody plant species are negatively affected by firewood harvesting. We found that anthropogenic pressure, expressed as EIV, covaried with density of firewood species, which could entail higher human pressure on more abundant and/or more accessible species. The apparent negative impact of anthropogenic pressure on populations of wild fuel species is corroborated by our finding that, in addition to altitude, several anthropogenic variables (i.e. site accessibility, cultivation of exotics and burning practices) explain part of the variation in height of firewood species in the surroundings of Apillapampa.


Fuel Quechuas Andes Anthropogenic pressure Mountain areas Ethnobotany Plant use Firewood Vegetation ecology 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Beck, S. G., Paniagua, N., Yevara, M., & Liberman, M. (2001). La vegetación y uso de la tierra del altiplano y de los valles en el Oeste del Departamento de Tarija, Bolivia. In S. G. Beck, N. Paniagua, & D. Preston (Eds.), Historia, ambiente y sociedad en Tarija, Bolivia (pp. 47–94). Instituto de Ecologia, UMSA, School of Geography, University of Leeds. La Paz, Bolivia: Editorial Instituto de Ecologia.Google Scholar
  2. Bentley, J., & Valencia, J. (2003). Learning about trees in a Quechua-speaking Andean community in Bolivia. In P. Van Mele (Ed.), Way out of the woods: Learning how to manage trees and forests (pp. 70–95). Newburg: CPL.Google Scholar
  3. Davis, A., & Wagner, J. R. (2003). Who knows? On the importance of identifying “Experts” when researching local ecological knowledge. Human Ecology, 31, 463–489.CrossRefGoogle Scholar
  4. Dünnwald, C., & Vega, A. (1998). Am Anfang einer Energoekrise?! Ergebnisse einer Brennholzverbrauchsstudie im bolivianischen Hochland. Mitteilungen der Bundesanstalt für Holzwirtschaft, 190, 281–284.Google Scholar
  5. Ellen, R., Parkes, P., & Bicker, A. (2000). Indigenous environmental knowledge and its transformations: Critical anthropological perspectives. Amsterdam: Harwood.Google Scholar
  6. Etkin, N. L. (2002). Local knowledge of biotic diversity and its conservation in rural Hausaland, northern Nigeria. Economic Botany, 56, 73–88.CrossRefGoogle Scholar
  7. Fepade (Fundación Ecuménica Para el Desarollo) (1998). Diagnostico del distrito de Apillapampa. Cochabamba, Bolivia.Google Scholar
  8. FAO (Food and Agriculture Organization) (2001). Informacion para el Desarrollo Forestal Sostenible: Estado de la informacion forestal en Bolivia. Santiago: FAO.Google Scholar
  9. García, E. E., & Beck, S. G. (2006). Puna. In M. Moraes, B. Ollgaard, L. P. Kvist, F. Borchsenius, & H. Balslev (Eds.), Botánica Económica de los Andes Centrales (pp. 51–76). La Paz: Universidad Mayor de San Andres.Google Scholar
  10. Hellier, A., Newton, A. C., & Ochoa Gaona, S. (1999). Use of indigenous knowledge for rapidly assessing trends in biodiversity: A case study from Chiapas, Mexico. Biodiversity and Conservation, 8, 869–889.CrossRefGoogle Scholar
  11. Higgins, S., Shackleton, C. M., & Robinson, E. R. (1999). Changes in woody community structure and composition under contrasting landuse systems in a semiarid savanna, South Africa. Journal of Biogeography, 26, 619–627.CrossRefGoogle Scholar
  12. Hjortsø, C. N., Jacobsen, J. B., Kamelarczyk, K. B. F., & Moraes, M. (2006). Economía forestal en Bolivia. In M. Moraes, B. Ollgaard, L. P. Kvist, F. Borchsenius, & H. Balslev (Eds.), Botánica Económica de los Andes Centrales (pp. 533–557). La Paz: Universidad Mayor de San Andres.Google Scholar
  13. Hofstede, R. G. M., Groenendijk, J. P., Coppus, R., Fehse, J. C., & Sevink, J. (2002). Impact of pine plantations on soils and vegetation in the Ecuadorian High Andes. Mountain Research and Development, 22, 159–167.CrossRefGoogle Scholar
  14. Ibisch, P. L. (1994). Flora y vegetación de la provincia Arque, departamento Cochabamba, Bolivia: III. Vegetación. Ecología en Bolivia, 22, 53–92.Google Scholar
  15. Ibisch, P. L. (2002). Evaluation of a rural development project in southwest Cochabamba, Bolivia, and its agroforestry activities involving Polylepis besseri and other native species—a decade of lessons learned. Ecotropica, 8, 205–218.Google Scholar
  16. Ibisch, P. L. (2003). Degradación y pérdida de la biodiversidad terrestre por su utilización directa: Flora. In P. L. Ibisch, & G. Mérida (Eds.), Biodiversidad: La riqueza de Bolivia. Estado de conocimiento y conservación (pp. 214–216). Santa Cruz: Editorial FAN.Google Scholar
  17. Ibisch, P. L., & Mérida, G. (Eds.) (2003). Biodiversidad: La riqueza de Bolivia. Estado de conocimiento y conservación. Santa Cruz: Editorial FAN.Google Scholar
  18. Ibisch, P. L., Carretero, A., Beck, S. G., Cúellar, S., Espinoza, S. D., & Araujo, N. V. (2003). Estado de conservación de la biodiversidad: El caso de los bosques andinos. In P. L. Ibisch, & G. Mérida (Eds.), Biodiversidad: La riqueza de Bolivia. Estado de conocimiento y conservación (pp. 272–285). Santa Cruz de la Sierra: Editorial FAN.Google Scholar
  19. INE (Instituto Nacional de Estadistica) (2007). Bolivia: Hogares, según área geográfica y combustible utilizado para cocinar, 1998–2003. Accessed 15 November 2007.
  20. Israel, D. (2002). Fuel choice in developing countries: Evidence from Bolivia. Economic Development & Cultural Change, 50, 865–891.CrossRefGoogle Scholar
  21. Jongman, R. H. G., Ter Braak, C. J. F., & Van Tongeren, O. F. R. (1996). Data analysis in community and landscape ecology. Cambridge: Cambridge University Press.Google Scholar
  22. Kaschula, S. A., Twine, W. C., & Scholes, M. C. (2005). The effect of catena position and stump characteristics on the coppice response of three savanna fuelwood species. Environmental Conservation, 32(1), 76–84.CrossRefGoogle Scholar
  23. Kessler, M. (2006). Bosques de Polylepis. In M. Moraes, B. Ollgaard, L. P. Kvist, F. Borchsenius & H. Balslev (Eds.), Botánica Económica de los Andes Centrales (pp. 110–120). La Paz: Universidad Mayor de San Andres.Google Scholar
  24. Kessler, M., & Driesch, P. (1993). Causas e historia de la destrucción de bosques altoandinos en Bolivia. Ecología en Bolivia, 21, 1–18.Google Scholar
  25. Kumar, R., & Shahabuddin, G. (2005). Effects of biomass extraction on vegetation structure, diversity and composition of forests in Sariska Tiger Reserve, India. Environmental Conservation, 32, 248–259.CrossRefGoogle Scholar
  26. Luoga, E., Witkowski, E., & Balkwill, K. (2002). Harvested and standing wood stocks in protected and communal miombo woodlands of eastern Tanzania. Forest Ecology and Management, 164, 15–30.CrossRefGoogle Scholar
  27. Mahamane, L., & Mahamane, S. (2005). Biodiversity of ligneous species in semiarid to arid zones of southwestern Niger according to anthropogenic and natural factors. Agriculture, Ecosystems and Environment, 105, 267–271.CrossRefGoogle Scholar
  28. McCune, B., & Mefford, M. J. (1999). PC-ORD version 4.0: Multivariate analysis of ecological data. Gleneden Beach: MjM Software.Google Scholar
  29. Molina, A., Reigosa, M. J., & Carballeira, A. (1991). Release of allelochemical agents from litter, throughfall, and topsoil in plantations of Eucalyptus globulus Labill in Spain. Journal of Chemical Ecology, 17, 147–160.CrossRefGoogle Scholar
  30. Nakul, C., Sharma, E., Deb, D. C., & Sundriyal, R. C. (2002). Impact of firewood extraction on tree structure, regeneration and woody biomass productivity in a Trekking Corridor of the Sikkim Himalaya. Mountain Research and Development, 22, 150–158.CrossRefGoogle Scholar
  31. Navarro, G. (2002). Vegetación y unidades biogeográficas. In G. Navarro & M. Maldonado (Eds.), Geografía ecológica de Bolivia: Vegetación y ambientes acuáticos (pp. 1–500). Cochabamba: Centro de Ecología Simón I. Patino.Google Scholar
  32. Pedrotti, F., Venanzoni, R., & Suarez Tapia, E. (1988). Comunidades vegetales del valle de Capinota. Ecologia en Bolivia, 11, 25–45.Google Scholar
  33. Roberts-Pichette, P., & Gillespie, L. (1999). Terrestrial vegetation monitoring protocols. EMAN Occasional Paper Series Report No. 9, Ontario, Canada.Google Scholar
  34. Shackleton, C. M., Griffin, N., Banks, D. I., Mavrandonis, J., & Shackleton, S. E. (1994). Community structure and species composition along a disturbance gradient in a communally managed South African savanna. Vegetatio, 115, 157–168.Google Scholar
  35. Souto, X. C., Bolano, J. C., González, L., & Reigosa, M. J. (2001). Allelopathic effects of tree species on some soil microbial populations and herbaceous plants. Biologia Plantarum, 44, 269–275.CrossRefGoogle Scholar
  36. Thomas, E. (2009). Quantitative ethnobotany in Bolivia: Knowledge, use and diversity of plants in Quechua, Yuracaré and Trinitario Communities from the Andes and Amazon. Saarbrücken: VDM.Google Scholar
  37. Thomas, E., Vandebroek, I., & Van Damme, P. (2007). What works in the field? A comparison of different interviewing methods in ethnobotany with special reference to the use of photographs. Economic Botany, 61, 376–384.CrossRefGoogle Scholar
  38. Thomas, E., Vandebroek, I., Goetghebeur, P., Sanca, S., Arrazola, S., & Van Damme, P. (2008). The relationship between plant use and plant diversity in the Bolivian Andes, with special reference to medicinal plant use. Human Ecology, 36, 861–879.CrossRefGoogle Scholar
  39. Thomas, E., Vandebroek, I., Sanca, S., & Van Damme, P. (2009a). Cultural significance of medicinal plant families and species among Quechua farmers in Apillapampa, Bolivia. Journal of Ethnopharmacology, 122, 60–67.CrossRefGoogle Scholar
  40. Thomas, E., Vandebroek, I., Van Damme, P., Goetghebeur, P., Douterlungne, D., Sanca, S., et al. (2009b). The relation between accessibility, diversity and indigenous valuation of vegetation in the Bolivian Andes. Journal of Arid Environments, 73, 854–861.CrossRefGoogle Scholar
  41. Thomas, E., Vandebroek, I., & Van Damme, P. (2009c). Valuation of forests and plant species in indigenous territory and National Park Isiboro-Secure, Bolivia. Economic Botany, 63, 229–241.CrossRefGoogle Scholar
  42. Thomas, E., Van Damme, P., & Goetghebeur, P. (2010). Some factors determining species diversity of prepuna and puna vegetations in a Bolivian Andes region. Plant Ecology and Evolution, 143, 31–42.CrossRefGoogle Scholar
  43. Veach, R., Lee, D., & Philippi, T. (2003). Human disturbance and forest diversity in the Tansa Valley, India. Biodiversity and Conservation, 12, 1051–1072.CrossRefGoogle Scholar
  44. Williams-Linera, G. (2002). Tree species richness complementarity, disturbance and fragmentation in a Mexican tropical montane cloud forest. Biodiversity and Conservation, 11, 1825–1843.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Evert Thomas
    • 1
  • David Douterlungne
    • 2
  • Ina Vandebroek
    • 3
  • Frieke Heens
    • 4
  • Paul Goetghebeur
    • 4
  • Patrick Van Damme
    • 1
  1. 1.Laboratory of Tropical and Subtropical Agriculture and EthnobotanyGhent UniversityGhentBelgium
  2. 2.Sistemas de Producción AlternativosEl Colegio de la Frontera SurSan Cristóbal de Las CasasMexico
  3. 3.Institute of Economic BotanyThe New York Botanical GardenNew YorkUSA
  4. 4.Research Group Spermatophytes, Department of BiologyGhent UniversityGhentBelgium

Personalised recommendations