Skip to main content
Log in

Estimation of nested spatial patterns and seasonal variation in the longitudinal distribution of Sicyopterus japonicus in the Datuan Stream, Taiwan by using geostatistical methods

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

This study attempts to determine the scale-dependent hierarchical spatial variation and longitudinal distributions of Sicyopterus japonicus year round. The distribution of S. japonicus in the Datuan Stream in northern Taiwan was surveyed during the fall and winter 2007, as well as the spring and summer of 2008. The spatial structure of S. japonicus density was modeled using geostatistics. The longitudinal distributions of S. japonicus density were then estimated using kriging and hydrology distance with nested variogram models. Variography results indicate that nested variogram models could reflect the hierarchical structure in the spatial variation of seasonal S. japonicus density, with the small, median, and large ranges representing three nested scales. Models for the four seasons were consistent in that they shared the same shape of variogram models with various ranges and sill values. This model shape consistency implies stationary spatial correlations in the longitudinal fish distribution across the four seasons. The Kriging geostatistical method based on the multiple scales nested variogram models also provided robust estimates of S. japonicus densities at unsampled sections. We conclude that S. japonicus densities exhibit hierarchical patterns and variation in the four seasons along the study stream. Geostatistical methods with a nested variograms and hydrological distance are a highly effective means of delineating the hierarchical structure in longitudinal patterns of S. japonicus density in each season, providing estimates of the S. japonicus density for hierarchically structured spatial distributions and expanding knowledge of S. japonicus beyond the limits imposed by spatial and temporal scales.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abe, S., Iguchi, K., Ito, S., Uchida, Y., Ohnishi, H., & Ohmori, K. (2003). Habitat use of the grazing goby (Sicyopterus japonicus) in response to spatial heterogeneity in riparian shade. Journal of Freshwater Ecology, 18, 161–167.

    Article  Google Scholar 

  • Abe, S., Yodo, T., Matsubara, N., & Iguchi, K. (2007). Distribution of two sympatric amphidromous grazing fish Plecoglossus alivelis Temminck & Schlegel and Sicypoterus japonicus (Tanka) along the course of a temperate river. Hydrobiologia, 575, 415–422.

    Article  Google Scholar 

  • Allan, J. D., & Johnson, L. B. (1997). Catchment scale analysis of aquatic ecosystem. Freshwater Biology, 37, 107–111.

    Article  Google Scholar 

  • Angermeier, P. L., & Schlosser, I. J. (1989). Species-area relationships for stream fish. Ecology, 70, 1450–1462.

    Article  Google Scholar 

  • Aukema, J. E. (2004). Distribution and dispersal of desert mistletoe is scale-dependent, hierarchically nested. Ecography, 27, 137–144.

    Article  Google Scholar 

  • Barbour, M. T., Gerritsen, J., Snyder, B. D., & Stribling, J. B. (1999). Rapid bioassessment protocols for use in streams and wadeable rivers: Periphyton, benthic macroinvertebrates and fish (2nd ed.). Washington. DC: USEPA. EPA 841-B-99–002.

    Google Scholar 

  • Bellehumeur, C., & Legendre, P. (1998). Multiscale sources of variation in ecological variables: Modeling spatial dispersion, elaborating sampling designs. Landscape Ecology, 13, 15–25.

    Article  Google Scholar 

  • Bellier, E., Monestiez, P., Durbec, J. P., & Candau, J. N. (2007). Identifying spatial relationships at multiple scales: Principal Coordinates of Neighbour Matrices (PCNM) and geostatistical approaches. Ecography, 30, 385–399.

    Google Scholar 

  • Carroll, S. S., & Pearson, D. L. (2000). Detecting and modeling spatial and temporal dependence in conservation biology. Conservation Biology, 14, 1893–1897.

    Article  Google Scholar 

  • Chilès, J. P., & Delfiner, P. (1999). Geostatistics: Modeling spatial uncertainty. New York: Wiley.

    Google Scholar 

  • Cressie, N. A. C. (1993). Statistics for spatial data, revised Edition edn. New York: Wiley.

    Google Scholar 

  • Cressie, N., Frey, J., Harch, B., & Smith, M. (2006). Spatial prediction on a river network. Journal of Agricultural Biological and Environmental Statistics, 11, 127–150.

    Article  Google Scholar 

  • Dôtu, Y., & Mito, S. (1955). Life history of the gobioid fish, Sicydium japonicum Tanaka. Science Bulletin of the Faculty of Agriculture Kyushu university, 10, 120–126.

    Google Scholar 

  • Durance, I., Celine, L., & Ormercod, S. J. (2006). Recognizing the importance of scale in the ecology and management of riverine fish. River Research and Applications, 22, 1143–1152.

    Article  Google Scholar 

  • Fausch, K. D., & Young, M. K. (1995). Evolutionarily significant units and movement of resident stream fishes: A cautionary tale. In J. L. Nielsen (Ed.), Evolution and the aquatic ecosystem: Defining unique units in population conservation (pp. 360–370). Monterey: American Fisheries Society Symposium.

    Google Scholar 

  • Fausch, K. D., Torgersen, C. E., Baxter, C., & Hiram, W. L. (2002). Landscapes to riverscapes: Bridging the gap between research and conservation of stream fishes. BioScience, 52, 483–498.

    Article  Google Scholar 

  • Frissell, C. A., Liss, W. J., Warren, C. E., & Hurley, M. D. (1986). A hierarchical framework for stream habitat classification: Viewing streams in a watershed context. Environmental Management, 10, 199–214.

    Article  Google Scholar 

  • Ganio, L. M., Torgersen, C. E., & Gresswell, R. E. (2005). A geostatistical approach for describing spatial pattern in stream networks. Frontiers in Ecology and the Environment, 3, 138–144.

    Article  Google Scholar 

  • Gowan, C., & Fausch, K. D. (1996). Mobile brook trout in two high-elevation Colorado streams: Re-evaluating the concept of restricted movement. Canadian Journal of Fisheries and Aquatic Sciences, 53, 2626–2637.

    Article  Google Scholar 

  • Grenouillet, G., Pont, D., & Hérissé, C. (2004). Within-basin fish assemblage structure: The relative influence of habitat versus stream spatial position on local species richness. Canadian Journal of Fisheries and Aquatic Sciences, 61, 93–102.

    Article  Google Scholar 

  • Gresswell, R. E., Torgersen, C. E., Bateman, D. S., Guy, T. J., Hendricks, S. R., & Wofford, J. E. B. (2006). A spatially explicit approach for evaluating relationships among coastal cutthroat trout, habitat, and disturbance in small Oregon streams. American Fisheries Society, 48, 457–471.

    Google Scholar 

  • Hobert, J. P., Altman, N. S., & Schofield, C. L. (1997). Analysis of fish species richness with spatial covariate. Journal of the American Statistical Association, 92, 846–854.

    Article  Google Scholar 

  • Imhoff, J. G., Fitzgibbon, J., & Annable, W. K. (1996). A hierarchical evaluation system for characterizing catchment ecosystems for fish habitat. Canadian Journal of Fisheries and Aquatic Sciences, 53, 312–326.

    Article  Google Scholar 

  • Inoue, M., & Miyayoshi, M. (2006). Fish foraging effects on benthic assemblages along a warm-temperate stream: differences among drift feeders, benthic predators and grazers. Oikos, 114, 95–107.

    Article  Google Scholar 

  • Labbe, T. R., & Fausch, K. D. (2000). Dynamics of intermittent stream habitat regulate persistence of a threatened fish at multiple scale. Ecological Applications, 10, 1774–1791.

    Article  Google Scholar 

  • Li, J., Herlihy, A., Gerth, W., Kaufmann, P., Gregory, S., Urquhart, S., et al. (2001). Variability in stream macroinvertebrate at multiple spatial scale. Freshwater Biology, 46, 87–97.

    Google Scholar 

  • Liang, S. H. (2005). Developing models for freshwater bio-monitoring. Taipei: National Park Workshop.

    Google Scholar 

  • Liebhold, A. M., & Gurevitch, J. (2002). Integrating the statistical analysis of spatial data in ecology. Ecography, 25, 533–557.

    Article  Google Scholar 

  • Lin, Y. P., Yeh, M. S., Deng, D. P., & Wong, Y. C. (2008). Geostatistical approaches and optimal additional sampling schemes for spatial patterns and future sampling of bird diversity. Global Ecology and Biogeography, 17, 175–188.

    Article  Google Scholar 

  • Lloyd, N. J., Mac, N. R., & Lake, P. S. (2006). Spatial scale of autocorrelation of assemblages of benthic invertebrates in two upland rivers in south-eastern Australia and its implications for biomonitoring and impact assessment in streams. Environmental Monitoring and Assessment, 115, 69–85.

    Article  Google Scholar 

  • Maddock, I. (1999). Importance of physical habitat assessment for evaluating river health. Freshwater Biology, 41, 373–391.

    Article  Google Scholar 

  • Magalhães, M. F., Batalha, D. C., & Collares-Pereira, M. J. (2002). Gradients in stream assemblages across a Mediterranean landscape: Contributions of environmental factors and spatial structure. Freshwater Biology, 47, 1015–1031.

    Article  Google Scholar 

  • Menge, B. A., & Olson, A. M. (1990). Role of scale and environmental factors in regulation of community structure. Trends in Ecology & Evolution, 5, 52–57.

    Article  CAS  Google Scholar 

  • Nash, J. E., & Sutcliffe, J. V. (1970). River flow forecasting through conceptual models, Part I - A discussion of principles. Journal of Hydrology, 10, 282–290.

    Article  Google Scholar 

  • Peterson, E. E., et al. (2006). Patterns spatial autocorrelation in stream water chemistry. Environmental Monitoring and Assessment, 121, 571–596.

    CAS  Google Scholar 

  • Peterson, E. E., Theobald, D. M., & Hoef, J. M. V. (2007). Geostatistical modeling on stream networks: Developing valid covariance matrices based on hydrological distance and stream flow. Freshwater Biology, 52, 267–279.

    Article  Google Scholar 

  • Rivoirard, J., Simmonds, J., Foote, K., Fernandes, P., & Bez, N. (2000). Geostatistics for estimating fish abundance. Boston: Blackwell.

    Book  Google Scholar 

  • Schlosser, I. J. (1991). Stream fish ecology: A landscape perspective. Bioscience, 41, 704–712.

    Article  Google Scholar 

  • Schlosser, I. J. (1995). Critical landscape attributes that influence fish population dynamics in headwater streams. Hydrobiologia, 303, 71–81.

    Article  Google Scholar 

  • Shen, K. N., & Tzeng, W. N. (2002). Formation of a metamorphosis check in otoliths of the amphidromous goby Sicyopterus japonicus. Marine Ecology-Progress Series, 228, 205–211.

    Article  Google Scholar 

  • Shen, K. N., Lee, Y. C., & Tzeng, W. N. (1998). Use of otolith microchemistry to investigate the life history pattern of gobies in a Taiwanese stream. Zoological Studies, 37, 322–329.

    Google Scholar 

  • Thompson, A. R., Petty, J. T., & Grossman, G. D. (2001). Multiscale effects of resource patchiness on foraging behaviour and habitat use by longnose dace, Rhinichthys cataractae. Freshwater Biology, 46, 145–160.

    Article  Google Scholar 

  • Torgersen, C. E., & Close, D. A. (2004). Influence of habitat heterogeneity on the distribution of larval Pacific lamprey (Lampetra tridentata) at two spatial scales. Freshwater Biology, 49, 614–630.

    Article  Google Scholar 

  • Torgersen, C. E., Gresswell, R. E., & Bateman, D. S. (2004). Pattern detection in stream networks: Quantifying spatial variability in fish distribution. In T. Nishida, P. J. Kailola & C. E. Hollingworth (Eds.), Proceedings of the second annual international symposium on GIS/Spatial analyses in fishery and aquatic sciences (pp. 405–420). Saitama: Fishery GIS Research Group.

    Google Scholar 

  • Torgersen, C. E., Li, H. W., McIntosh, B. A., & Price, D. M. (1999). Multiscale thermal refugia and stream habitat associations of chinook salmon in northeastern Oregon. Ecological Applications, 9, 301–319.

    Article  Google Scholar 

  • Ver Hoef, J. M., Peterson, E., & Theobald, D. (2006). Spatial statistical models that use flow and stream. Environmental and Ecological Statistics, 13, 449–464.

    Article  Google Scholar 

  • Vilizzi, L., Copp, G. H., & Roussel, J. M. (2005). Assessing temporal variation and autocorrelation in fish habitat use. Folia Zoologica, 54, 432–442.

    Google Scholar 

  • Wackernagel, H. (2003). Multivariate geostatistics: An introduction with applications. New York: Springer.

    Google Scholar 

  • Webster, R., & Oliver, M. A. (2001). Geostatistics for environmental scientists. Chichester: Wiley.

    Google Scholar 

  • Wilkinson, C. D., & Edds, D. R. (2001). Spatial pattern and environmental correlates of a midstream stream fish community: Including spatial autocorrelation as a factor in community analyses. American Midland Naturalist, 146, 271–289.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu-Pin Lin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, YP., Wang, CL., Chang, CR. et al. Estimation of nested spatial patterns and seasonal variation in the longitudinal distribution of Sicyopterus japonicus in the Datuan Stream, Taiwan by using geostatistical methods. Environ Monit Assess 178, 1–18 (2011). https://doi.org/10.1007/s10661-010-1666-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-010-1666-2

Keywords

Navigation