Estimation of nested spatial patterns and seasonal variation in the longitudinal distribution of Sicyopterus japonicus in the Datuan Stream, Taiwan by using geostatistical methods

  • Yu-Pin Lin
  • Cheng-Long Wang
  • Chi-Ru Chang
  • Hsiao-Hsuan Yu


This study attempts to determine the scale-dependent hierarchical spatial variation and longitudinal distributions of Sicyopterus japonicus year round. The distribution of S. japonicus in the Datuan Stream in northern Taiwan was surveyed during the fall and winter 2007, as well as the spring and summer of 2008. The spatial structure of S. japonicus density was modeled using geostatistics. The longitudinal distributions of S. japonicus density were then estimated using kriging and hydrology distance with nested variogram models. Variography results indicate that nested variogram models could reflect the hierarchical structure in the spatial variation of seasonal S. japonicus density, with the small, median, and large ranges representing three nested scales. Models for the four seasons were consistent in that they shared the same shape of variogram models with various ranges and sill values. This model shape consistency implies stationary spatial correlations in the longitudinal fish distribution across the four seasons. The Kriging geostatistical method based on the multiple scales nested variogram models also provided robust estimates of S. japonicus densities at unsampled sections. We conclude that S. japonicus densities exhibit hierarchical patterns and variation in the four seasons along the study stream. Geostatistical methods with a nested variograms and hydrological distance are a highly effective means of delineating the hierarchical structure in longitudinal patterns of S. japonicus density in each season, providing estimates of the S. japonicus density for hierarchically structured spatial distributions and expanding knowledge of S. japonicus beyond the limits imposed by spatial and temporal scales.


Fish abundance monitoring Kriging Longitudinal pattern Multiscale Nested structure Spatial variation assessment Variogram 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abe, S., Iguchi, K., Ito, S., Uchida, Y., Ohnishi, H., & Ohmori, K. (2003). Habitat use of the grazing goby (Sicyopterus japonicus) in response to spatial heterogeneity in riparian shade. Journal of Freshwater Ecology, 18, 161–167.CrossRefGoogle Scholar
  2. Abe, S., Yodo, T., Matsubara, N., & Iguchi, K. (2007). Distribution of two sympatric amphidromous grazing fish Plecoglossus alivelis Temminck & Schlegel and Sicypoterus japonicus (Tanka) along the course of a temperate river. Hydrobiologia, 575, 415–422.CrossRefGoogle Scholar
  3. Allan, J. D., & Johnson, L. B. (1997). Catchment scale analysis of aquatic ecosystem. Freshwater Biology, 37, 107–111.CrossRefGoogle Scholar
  4. Angermeier, P. L., & Schlosser, I. J. (1989). Species-area relationships for stream fish. Ecology, 70, 1450–1462.CrossRefGoogle Scholar
  5. Aukema, J. E. (2004). Distribution and dispersal of desert mistletoe is scale-dependent, hierarchically nested. Ecography, 27, 137–144.CrossRefGoogle Scholar
  6. Barbour, M. T., Gerritsen, J., Snyder, B. D., & Stribling, J. B. (1999). Rapid bioassessment protocols for use in streams and wadeable rivers: Periphyton, benthic macroinvertebrates and fish (2nd ed.). Washington. DC: USEPA. EPA 841-B-99–002.Google Scholar
  7. Bellehumeur, C., & Legendre, P. (1998). Multiscale sources of variation in ecological variables: Modeling spatial dispersion, elaborating sampling designs. Landscape Ecology, 13, 15–25.CrossRefGoogle Scholar
  8. Bellier, E., Monestiez, P., Durbec, J. P., & Candau, J. N. (2007). Identifying spatial relationships at multiple scales: Principal Coordinates of Neighbour Matrices (PCNM) and geostatistical approaches. Ecography, 30, 385–399.Google Scholar
  9. Carroll, S. S., & Pearson, D. L. (2000). Detecting and modeling spatial and temporal dependence in conservation biology. Conservation Biology, 14, 1893–1897.CrossRefGoogle Scholar
  10. Chilès, J. P., & Delfiner, P. (1999). Geostatistics: Modeling spatial uncertainty. New York: Wiley.Google Scholar
  11. Cressie, N. A. C. (1993). Statistics for spatial data, revised Edition edn. New York: Wiley.Google Scholar
  12. Cressie, N., Frey, J., Harch, B., & Smith, M. (2006). Spatial prediction on a river network. Journal of Agricultural Biological and Environmental Statistics, 11, 127–150.CrossRefGoogle Scholar
  13. Dôtu, Y., & Mito, S. (1955). Life history of the gobioid fish, Sicydium japonicum Tanaka. Science Bulletin of the Faculty of Agriculture Kyushu university, 10, 120–126.Google Scholar
  14. Durance, I., Celine, L., & Ormercod, S. J. (2006). Recognizing the importance of scale in the ecology and management of riverine fish. River Research and Applications, 22, 1143–1152.CrossRefGoogle Scholar
  15. Fausch, K. D., & Young, M. K. (1995). Evolutionarily significant units and movement of resident stream fishes: A cautionary tale. In J. L. Nielsen (Ed.), Evolution and the aquatic ecosystem: Defining unique units in population conservation (pp. 360–370). Monterey: American Fisheries Society Symposium.Google Scholar
  16. Fausch, K. D., Torgersen, C. E., Baxter, C., & Hiram, W. L. (2002). Landscapes to riverscapes: Bridging the gap between research and conservation of stream fishes. BioScience, 52, 483–498.CrossRefGoogle Scholar
  17. Frissell, C. A., Liss, W. J., Warren, C. E., & Hurley, M. D. (1986). A hierarchical framework for stream habitat classification: Viewing streams in a watershed context. Environmental Management, 10, 199–214.CrossRefGoogle Scholar
  18. Ganio, L. M., Torgersen, C. E., & Gresswell, R. E. (2005). A geostatistical approach for describing spatial pattern in stream networks. Frontiers in Ecology and the Environment, 3, 138–144.CrossRefGoogle Scholar
  19. Gowan, C., & Fausch, K. D. (1996). Mobile brook trout in two high-elevation Colorado streams: Re-evaluating the concept of restricted movement. Canadian Journal of Fisheries and Aquatic Sciences, 53, 2626–2637.CrossRefGoogle Scholar
  20. Grenouillet, G., Pont, D., & Hérissé, C. (2004). Within-basin fish assemblage structure: The relative influence of habitat versus stream spatial position on local species richness. Canadian Journal of Fisheries and Aquatic Sciences, 61, 93–102.CrossRefGoogle Scholar
  21. Gresswell, R. E., Torgersen, C. E., Bateman, D. S., Guy, T. J., Hendricks, S. R., & Wofford, J. E. B. (2006). A spatially explicit approach for evaluating relationships among coastal cutthroat trout, habitat, and disturbance in small Oregon streams. American Fisheries Society, 48, 457–471.Google Scholar
  22. Hobert, J. P., Altman, N. S., & Schofield, C. L. (1997). Analysis of fish species richness with spatial covariate. Journal of the American Statistical Association, 92, 846–854.CrossRefGoogle Scholar
  23. Imhoff, J. G., Fitzgibbon, J., & Annable, W. K. (1996). A hierarchical evaluation system for characterizing catchment ecosystems for fish habitat. Canadian Journal of Fisheries and Aquatic Sciences, 53, 312–326.CrossRefGoogle Scholar
  24. Inoue, M., & Miyayoshi, M. (2006). Fish foraging effects on benthic assemblages along a warm-temperate stream: differences among drift feeders, benthic predators and grazers. Oikos, 114, 95–107.CrossRefGoogle Scholar
  25. Labbe, T. R., & Fausch, K. D. (2000). Dynamics of intermittent stream habitat regulate persistence of a threatened fish at multiple scale. Ecological Applications, 10, 1774–1791.CrossRefGoogle Scholar
  26. Li, J., Herlihy, A., Gerth, W., Kaufmann, P., Gregory, S., Urquhart, S., et al. (2001). Variability in stream macroinvertebrate at multiple spatial scale. Freshwater Biology, 46, 87–97.Google Scholar
  27. Liang, S. H. (2005). Developing models for freshwater bio-monitoring. Taipei: National Park Workshop.Google Scholar
  28. Liebhold, A. M., & Gurevitch, J. (2002). Integrating the statistical analysis of spatial data in ecology. Ecography, 25, 533–557.CrossRefGoogle Scholar
  29. Lin, Y. P., Yeh, M. S., Deng, D. P., & Wong, Y. C. (2008). Geostatistical approaches and optimal additional sampling schemes for spatial patterns and future sampling of bird diversity. Global Ecology and Biogeography, 17, 175–188.CrossRefGoogle Scholar
  30. Lloyd, N. J., Mac, N. R., & Lake, P. S. (2006). Spatial scale of autocorrelation of assemblages of benthic invertebrates in two upland rivers in south-eastern Australia and its implications for biomonitoring and impact assessment in streams. Environmental Monitoring and Assessment, 115, 69–85.CrossRefGoogle Scholar
  31. Maddock, I. (1999). Importance of physical habitat assessment for evaluating river health. Freshwater Biology, 41, 373–391.CrossRefGoogle Scholar
  32. Magalhães, M. F., Batalha, D. C., & Collares-Pereira, M. J. (2002). Gradients in stream assemblages across a Mediterranean landscape: Contributions of environmental factors and spatial structure. Freshwater Biology, 47, 1015–1031.CrossRefGoogle Scholar
  33. Menge, B. A., & Olson, A. M. (1990). Role of scale and environmental factors in regulation of community structure. Trends in Ecology & Evolution, 5, 52–57.CrossRefGoogle Scholar
  34. Nash, J. E., & Sutcliffe, J. V. (1970). River flow forecasting through conceptual models, Part I - A discussion of principles. Journal of Hydrology, 10, 282–290.CrossRefGoogle Scholar
  35. Peterson, E. E., et al. (2006). Patterns spatial autocorrelation in stream water chemistry. Environmental Monitoring and Assessment, 121, 571–596.Google Scholar
  36. Peterson, E. E., Theobald, D. M., & Hoef, J. M. V. (2007). Geostatistical modeling on stream networks: Developing valid covariance matrices based on hydrological distance and stream flow. Freshwater Biology, 52, 267–279.CrossRefGoogle Scholar
  37. Rivoirard, J., Simmonds, J., Foote, K., Fernandes, P., & Bez, N. (2000). Geostatistics for estimating fish abundance. Boston: Blackwell.CrossRefGoogle Scholar
  38. Schlosser, I. J. (1991). Stream fish ecology: A landscape perspective. Bioscience, 41, 704–712.CrossRefGoogle Scholar
  39. Schlosser, I. J. (1995). Critical landscape attributes that influence fish population dynamics in headwater streams. Hydrobiologia, 303, 71–81.CrossRefGoogle Scholar
  40. Shen, K. N., & Tzeng, W. N. (2002). Formation of a metamorphosis check in otoliths of the amphidromous goby Sicyopterus japonicus. Marine Ecology-Progress Series, 228, 205–211.CrossRefGoogle Scholar
  41. Shen, K. N., Lee, Y. C., & Tzeng, W. N. (1998). Use of otolith microchemistry to investigate the life history pattern of gobies in a Taiwanese stream. Zoological Studies, 37, 322–329.Google Scholar
  42. Thompson, A. R., Petty, J. T., & Grossman, G. D. (2001). Multiscale effects of resource patchiness on foraging behaviour and habitat use by longnose dace, Rhinichthys cataractae. Freshwater Biology, 46, 145–160.CrossRefGoogle Scholar
  43. Torgersen, C. E., & Close, D. A. (2004). Influence of habitat heterogeneity on the distribution of larval Pacific lamprey (Lampetra tridentata) at two spatial scales. Freshwater Biology, 49, 614–630.CrossRefGoogle Scholar
  44. Torgersen, C. E., Gresswell, R. E., & Bateman, D. S. (2004). Pattern detection in stream networks: Quantifying spatial variability in fish distribution. In T. Nishida, P. J. Kailola & C. E. Hollingworth (Eds.), Proceedings of the second annual international symposium on GIS/Spatial analyses in fishery and aquatic sciences (pp. 405–420). Saitama: Fishery GIS Research Group.Google Scholar
  45. Torgersen, C. E., Li, H. W., McIntosh, B. A., & Price, D. M. (1999). Multiscale thermal refugia and stream habitat associations of chinook salmon in northeastern Oregon. Ecological Applications, 9, 301–319.CrossRefGoogle Scholar
  46. Ver Hoef, J. M., Peterson, E., & Theobald, D. (2006). Spatial statistical models that use flow and stream. Environmental and Ecological Statistics, 13, 449–464.CrossRefGoogle Scholar
  47. Vilizzi, L., Copp, G. H., & Roussel, J. M. (2005). Assessing temporal variation and autocorrelation in fish habitat use. Folia Zoologica, 54, 432–442.Google Scholar
  48. Wackernagel, H. (2003). Multivariate geostatistics: An introduction with applications. New York: Springer.Google Scholar
  49. Webster, R., & Oliver, M. A. (2001). Geostatistics for environmental scientists. Chichester: Wiley.Google Scholar
  50. Wilkinson, C. D., & Edds, D. R. (2001). Spatial pattern and environmental correlates of a midstream stream fish community: Including spatial autocorrelation as a factor in community analyses. American Midland Naturalist, 146, 271–289.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Yu-Pin Lin
    • 1
  • Cheng-Long Wang
    • 1
  • Chi-Ru Chang
    • 2
  • Hsiao-Hsuan Yu
    • 1
  1. 1.Department of Bioenvironmental Systems EngineeringNational Taiwan UniversityTaipeiTaiwan
  2. 2.Department of Landscape ArchitectureChinese Culture UniversityTaipeiTaiwan

Personalised recommendations