Advertisement

Environmental Monitoring and Assessment

, Volume 176, Issue 1–4, pp 517–530 | Cite as

The chronic effects of oil pollution on marine phytoplankton in a subtropical bay, China

  • Yi-Jun Huang
  • Zhi-Bing Jiang
  • Jiang-Ning Zeng
  • Quan-Zhen Chen
  • Yong-qiang Zhao
  • Yi-bo Liao
  • Lu Shou
  • Xiao-qun Xu
Article

Abstract

To evaluate the effects of crude oil water accommodated fraction (WAF) on marine phytoplankton community, natural phytoplankton collected seasonally from the Yueqing bay were exposed to eight groups of crude oil WAF for 15 days under laboratory conditions. Chlorophyll a and cell density were measured, and species of phytoplankton were identified every 24 h to reflect the change of phytoplankton community. The results showed that (1) High concentrations (≥2.28 mg l − 1) of oil pollution would greatly restrain phytoplankton growth (p < 0.001), decrease chlorophyll a content and cell density, whereas low concentrations (≤1.21 mg l − 1) did not restrain its growth but rather promoted the phytoplankton growth. (2) The biodiversity, evenness, and species number of phytoplankton were all significantly influenced by crude oil WAF in all seasons (p < 0.001). (3) The dominant species changes were different under different pollutant concentrations in different seasons. Different species had different tolerances to the oil pollution, thus leading to abnormal succession.

Keywords

Phytoplankton community Crude oil water accommodated fraction (WAF) Chlorophyll a (chl-a) Cell density Community composition Succession 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

10661_2010_1601_MOESM1_ESM.doc (132 kb)
(DOC 132 kb)

References

  1. Aksmann, A., & Tukaj, Z. (2004). The effect of anthracene and phenanthrene on the growth, photosynthesis, and SOD activity of the green alga Scenedesmus armatus depends on the PAR irradiance and CO2 level. Archives of Environmental Contamination and Toxicology, 47(2), 177–184.CrossRefGoogle Scholar
  2. Aksmann, A., & Tukaj, Z. (2008). Intact anthracene inhibits photosynthesis in algal cells: A fluorescence induction study on Chlamydomonas reinhardtii cw92 strain. Chemosphere, 74(1), 26–32.CrossRefGoogle Scholar
  3. Al-Hasan, R. H., Sorkhoh, N. A., Al-Bader, D., & Radwan, S. S. (1994). Utilization of hydrocarbons by cyanobacteria from microbial mats on oily coasts of the Gulf. Applied Microbiology and Biotechnology, 41(5), 615–619.CrossRefGoogle Scholar
  4. Anderson, J. W., Neff, J. M., Cox, B. A., Tatem, H. E., & Hightower, G. M. (1974). Characteristics of dispersion and water-soluble extracts of crude and refined oils and their toxicity to estuarine crustaceans and fish. Marine Biology, 27(1), 75–88.CrossRefGoogle Scholar
  5. Bejarano, A. C., Chandler, G. T., He, L., & Coull, B. C. (2006). Individual to population level effects of South Louisiana crude oil water accommodated hydrocarbon fraction (WAF) on a marine meiobenthic copepod. Journal of ExperimentalMarine Biology and Ecology, 332(1), 49–59.CrossRefGoogle Scholar
  6. Belzile, C., Demers, S., Ferreyra, G. A., Schloss, I., Nozais, C., Lacoste, K., et al. (2006). UV effects on marine planktonic food webs: A synthesis of results from mesocosm studies. Photochemistry and Photobiology, 82(4), 850–856.CrossRefGoogle Scholar
  7. Bopp, S. K., & Lettieri, T. (2007). Gene regulation in the marine diatom Thalassiosira pseudonana upon exposure to polycyclic aromatic hydrocarbons (PAHs). Gene, 396(2), 293–302.CrossRefGoogle Scholar
  8. Celik, M., & Er, I. D. (2006). Application requirements of catastrophe theory in maritime transportation industry. In International conference on maritime transport (3rd ed, pp. 879–887). 16–19 May, Barcelona, Spain.Google Scholar
  9. Celik, M., & Topcu, Y. I. (2009). Use of an ANP to prioritize managerial responsibilities of maritime stakeholders in environmental incidents: An oil spill case. Transportation Research Part D: Transport and Environment, 14(7), 502–506.CrossRefGoogle Scholar
  10. Díez, I., Secilla, A., Santolaria, A., & Gorostiaga, J. M. (2009). Ecological monitoring of intertidal phytobenthic communities of the Basque Coast (N. Spain) following the Prestige oil spill. Environmental Monitoring and Assessment, 159(1–4), 555–575.CrossRefGoogle Scholar
  11. El-Dib, M. A., Abou-Waly, H. F., & El-Naby, A. H. (2001). Fuel oil effect on the population growth, species diversity and chlorophyll a content of freshwater microalgae. International Journal of Environmental Health Research, 11(2), 189–197.CrossRefGoogle Scholar
  12. Fiala, M., & Delille, D. (1999). Annual changes of microalgae biomass in Antarctic sea ice contaminated by crude oil and diesel fuel. Polar Biology, 21(6), 391–396.CrossRefGoogle Scholar
  13. Fleeger, J. W., Carman, K. R., & Nisbet, R. M. (2003). Indirect effects of contaminants in aquatic ecosystems. Science of the Total Environment, 317(1–3), 207–233.CrossRefGoogle Scholar
  14. Gao, Z. H., Yang, J. Q., & Wang, P. G. (2007). Theory, method, and case study of ecological lost assessment on the marine oil spill (pp. 291–358). Beijing: Ocean Press.Google Scholar
  15. González, J. J., Viñas, L., Franco, M. A., Fumega, J., Soriano, J. A., Grueiro, G., et al. (2006). Spatial and temporal distribution of dissolved/dispersed aromatic hydrocarbons in seawater in the area affected by the Prestige oil spill. Marine Pollution Bulletin, 53(5–7), 250–259.CrossRefGoogle Scholar
  16. González, J., Figueiras, F. G., Aranguren-Gassis, M., Crespo, B. G., Fernández, E., Morán, X. A. G., et al. (2009). Effect of a simulated oil spill on natural assemblages of marine phytoplankton enclosed in microcosms. Estuarine, Coastal and Shelf Science, 83(3), 265–276.CrossRefGoogle Scholar
  17. Gordon, D. C., & Prouse, N. J. (1973). The effects of three oils on marine phytoplankton photosynthesis. Marine Biology, 22(4), 329–333.CrossRefGoogle Scholar
  18. Gulec, I., & Holdway, D. A. (1997). Toxicity of dispersant, oil and dispersed oil to two marine organisms. In International oil spill conference improving environmental protection progress, challenges, responsibilities. Fort Lauderdale, Florida.Google Scholar
  19. Hjorth, M. (2008). Plankton stress responses from PAH exposure and nutrient enrichment. Marine Ecology Progress Series, 363, 121–130.CrossRefGoogle Scholar
  20. Hjorth, M., Vester, J., Henriksen, P., Forbes, V., & Dahlloef, I. (2007). Functional and structural responses of marine plankton food web to pyrene contamination. Marine Ecology Progress Series, 338, 21–31.CrossRefGoogle Scholar
  21. Ibrahim, M. B. M., & Gamila, H. A. (2004). Algal bioassay for evaluating the role of algae in bioremediation of crude oil: II. freshwater phytoplankton assemblages. Bulletin of Environmental Contamination and Toxicology, 73(6), 971–978.CrossRefGoogle Scholar
  22. Jewson, D. H. (1992). Size reduction, reproductive strategy and the life cycle of a centric diatom. Philosophical Transactions: Biological Science, 336(1277), 191–213.CrossRefGoogle Scholar
  23. Juhasz, A. L., & Naidu, R. (2000). Bioremediation of high molecular weight polycyclic aromatic hydrocarbons: A review of the microbial degradation of benzo[a]pyrene. International Biodeterioration and Biodegradation, 45(1–2), 57–88.CrossRefGoogle Scholar
  24. Koshikawa, H., Xu, K. Q., Liu, Z. L., Kohata, K., Kawachi, M., Maki, H., et al. (2007). Effects of the water-soluble fraction of diesel oil on bacterial and primary production and the trophic transfer to mesozooplankton through a microbial food web in Yangtze estuary, China. Estuarine, Coastal and Shelf Science, 71(1–2), 68–80.CrossRefGoogle Scholar
  25. Linden, O., Elmgren, R., & Boehm, P. (1979). The Tsesis oil spill: Its impact on the coastal ecosystem of the Baltic Sea. Ambio, 8(6), 244–253.Google Scholar
  26. Liu, Y., Luan, T. G., Lu, N. N., & Lan, C. Y. (2006). Toxicity of fluoranthene and its biodegradation by Cyclotella caspia alga. Journal of Integrative Plant Biology, 48(2), 169–180.CrossRefGoogle Scholar
  27. Meng, W., Wang, L., & Zheng, B. (2007). Photoinduced toxicity single and binary mixtures of four polycyclic aromatic hydrocarbons to the marine diatom Skeletonema costatum. Acta Oceanologica Sinica, 26(6), 41–50.Google Scholar
  28. Nayar, S., Goh, B. P. L., & Chou, L. M. (2005). Environmetal impacts of diesel fuel on bacteria and phytoplankton in a tropical estuary assessed using in situ mesocosms. Ecotoxicology, 14(3), 397–412.CrossRefGoogle Scholar
  29. Ohwada, K., Nishimura, M., Wada, M., Nomura, H., Shibata, A., Okamoto, K., et al. (2003). Study of the effect of water-soluble fractions of heavy-oil on coastal marine organisms using enclosed ecosystems, mesocosms. Marine Pollution Bulltin, 47(1–6), 78–84.CrossRefGoogle Scholar
  30. Paixão, J. F., Nascimento, I. A., Pereira, S. A., Leite, M. B. L., Carvalho, G. C., Silveira, J. S. C., et al. (2007). Estimating the gasoline components and formulations toxicity to microalgae (Tetraselmis chuii) and oyster (Crassostrea rhizophorae) embryos: An approach to minimize environmental pollution risk. Environmental Research, 103(3), 365–374.CrossRefGoogle Scholar
  31. Pielou, E. C. (1966). Species-diversity and pattern-diversity in the study of ecological succesion. Journal of Theorical Biology, 10, 370–383.CrossRefGoogle Scholar
  32. Pulich, W. M., Winters, K., & Van-Baalen, C. (1974). The effects of a No. 2 fuel oil and two crude oils on the growth and photosynthesis of microalgae. Marine Biology, 28(2), 87–94.CrossRefGoogle Scholar
  33. Salas, N., Ortiz, L., Gilcoto, M., Varela, M., Bayona, J. M., Groom, S., et al. (2006). Fingerprinting petroleum hydrocarbons in plankton and surface sediments during the spring and early summer blooms in the Galician coast (NW Spain) after the Prestige oil spill. Marine Environmental Research, 62(5), 388–413.CrossRefGoogle Scholar
  34. Sargian, P., Mas, S., Pelletier, É., & Demers, S. (2007). Multiple stressors on an Antarctic microplankton assemblage: Water soluble crude oil and enhanced UVBR level at Ushuaia (Argentina). Polar Biology, 30(7), 829–841.CrossRefGoogle Scholar
  35. Sargian, P., Mostajir, B., Chatila, K., Ferreyra, G. A., Pelletier, É., & Demers, S. (2005). Non-synergistic effects of water-soluble crude oil and enhanced ultraviolet-B radiation on a natural plankton assemblage. Marine Ecology Progress Series, 294, 63–77.CrossRefGoogle Scholar
  36. Semple, K. T., Cain, R. B., & Schmidt, S. (1999). Biodegradation of aromatic compounds by microalgae. Fems Microbiology Letters, 170(2), 291–300.CrossRefGoogle Scholar
  37. Shannon, C. E., & Weaver, W. (1949). The Mathematical Theory of Communication (pp. 117). Urbana, Illinois: University of Illinois Press.Google Scholar
  38. Shi, X. Y., Wang, X. L., Han, X. R., Jiang, Y., Zhu, M. Y., Chen, S., et al. (2001). Relastionship between petroleum hydrocarbon and plankton in a mesocosm experiment. Acta Oceanologica Sinica, 20(2), 231–240.Google Scholar
  39. Sibley, P. K., Harris, M. L., Bestari, K. T., Steele, T. A., Robinson, R. D., Gensemer, R. W., et al. (2001). Response of phytoplankton communities to liquid creosote in freshwater microcosms. Environmental Toxicology and Chemistry, 20(12), 2785–2793.CrossRefGoogle Scholar
  40. Sibley, P. K., Harris, M. L., Bestari, K. T., Steele, T. A., Robinson, R. D., Gensemer, R. W., et al. (2004). Response of zooplankton and phytoplankton communities to creosote-impregnated Douglas fir pilings in freshwater microcosms. Archives of Environmental Contamination and Toxicology, 47(1), 56–66.CrossRefGoogle Scholar
  41. Sikkema, J., Bont, J. A. M., & Poolman, B. (1995). Mechanisms of membrane toxicity of hydrocarbons. Microbiology Reviews, 59(2), 201–222.Google Scholar
  42. Singh, A. K., & Kumar, H. D. (1991). Inhibitory effects of petroleum oil on photosynthetic electron transport system in the cyanobacterium Anabaena doliolum. Bulletin of Environmental Contamination and Toxicology, 47(6), 890–895.CrossRefGoogle Scholar
  43. Siron, R., Pelletier, E., & Roy, S. (1996). Effects of dispersed and adsorbed crude oil on microalgal and bacterial communities of cold seawater. Ecotoxicology, 5(4), 229–251.CrossRefGoogle Scholar
  44. Standardization Administration of China (2008a). GB/T 17378.4-2007 The specification for marine monitoring. Beijing: China Standards Press (in Chinese).Google Scholar
  45. Standardization Administration of China (2008b). GB/T 12763.6-2007 The specification for oceanographic survey. Beijing: China Standards Press (in Chinese).Google Scholar
  46. Stepaniyan, O. V. (2008). Effects of crude oil on major functional characteristics of macroalgae of the Barents Sea. Russian Journal of Marine Biology, 34(2), 131–134.CrossRefGoogle Scholar
  47. Varela, M., Bode, A., Lorenzo, J., Álvarez-Ossorio, M. T., Miranda, A., Patrocinio, T., et al. (2006). The effect of the “Prestige” oil spill on the plankton of the N–NW Spanish coast. Marine Pollution Bulletin, 53(5–7), 272–286.CrossRefGoogle Scholar
  48. Wang, L., & Zheng, B. (2008). Toxic effects of fluoranthene and copper on marine diatom Phaeodactylum tricornutum. Journal of Environmental Sciences-China, 20(11), 1363–1372.CrossRefGoogle Scholar
  49. Wang, L., Zheng, B., & Meng, W. (2008). Photo-induced toxicity of four polycyclic aromatic hydrocarbons, singly and in combination, to the marine diatom Phaeodactylum tricornutum. Ecotoxicology and Environmental Safety, 71(2), 465–472.CrossRefGoogle Scholar
  50. Werner, D. (1970). Productivity studies on diatom cultures. Helgoland Marine Research, 20(1–4), 97–103.Google Scholar
  51. Wolfe, M. F., Olsen, H. E., Gasuad, K. A., Tjeerdema, R. S., & Sowby, M. L. (1999). Induction of heat shock protein (hsp) 60 in Isochrysis galbana exposed to sublethal preparations of dispersant and Prudhoe Bay crude oil. Marine Environmental Research, 47(5), 473–489.CrossRefGoogle Scholar
  52. Zhao, W. H., Wang, J. T., Li, J. T., Cui, X., Wu, Y. L., & Miao, H. (2006). Contrast of nutrient limiting phytoplankton growth in the Changjiang River Estuary and the adjacent areas between summer and winter. Acta Oceanologica Sinica, 28(3), 119–126.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Yi-Jun Huang
    • 1
  • Zhi-Bing Jiang
    • 1
  • Jiang-Ning Zeng
    • 1
  • Quan-Zhen Chen
    • 1
  • Yong-qiang Zhao
    • 1
  • Yi-bo Liao
    • 1
  • Lu Shou
    • 1
  • Xiao-qun Xu
    • 1
  1. 1.Key Laboratory of Marine Ecosystem and BiogeochemistrySecond Institute of Oceanography, State Oceanic AdministrationHangzhouPeople’s Republic of China

Personalised recommendations