Advertisement

Environmental Monitoring and Assessment

, Volume 175, Issue 1–4, pp 589–600 | Cite as

Lichen transplants as a suitable tool to identify mercury pollution from waste incinerators: a case study from NE Italy

  • Mauro Tretiach
  • Fabio Candotto Carniel
  • Stefano Loppi
  • Alberto Carniel
  • Adriano Bortolussi
  • Denis Mazzilis
  • Clorinda Del Bianco
Article

Abstract

A lichen transplant study aimed at investigating a strong increase in mercury concentrations in lichens was run in a territory of NE Italy where background values were very low only 8 years before. Thalli of the lichen Pseudevernia furfuracea collected in a pristine area were exposed for 1.5, 3 and 6 months at 31 sites selected according to the observed pattern of Hg concentrations, location of the suspected source (a new waste incinerator) and prevailing wind direction. Hg strongly increased at eight sites after 1.5 months, at 12 after 3 months and at 20 after 6 months. The highest values were always located SW and S of the incinerator, in good agreement with the prevailing night wind direction. It was concluded that, although the immediate risk for the population living close to the incinerator is low, long-term hazard due to Hg accumulation in the surrounding environment should be seriously taken into account.

Keywords

Active biomonitoring Elemental composition Incinerator Pseudevernia furfuracea Robinia pseudacacia 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

10661_2010_1553_MOESM1_ESM.doc (737 kb)
(DOC 737 KB)

References

  1. Adamo, P., Bargagli, R., Giordano, S., Modenesi, P., Monaci, F., Pittao, E., et al. (2007). Natural and pre-treatments induced variability in the chemical composition and morphology of lichens and mosses selected for active monitoring of airborne elements. Environmental Pollution, 152(1), 11–19.CrossRefGoogle Scholar
  2. Ates, A., Yildiz, A., Yildiz, N., & Calimli, A. (2007). Heavy metal removal from aqueous solution by Pseudevernia furfuracea (L.) Zopf. Annali di Chimica, 97(5–6), 385–393.CrossRefGoogle Scholar
  3. Bargagli, R. (1998). Trace elements in terrestrial plants. An ecophysiological approach to biomonitoring and biorecovery. Berlin: Springer.Google Scholar
  4. Bargagli, R., & Barghigiani, C. (1991). Lichen biomonitoring of mercury emission and deposition in mining, geothermal and volcanic areas of Italy. Environmental Monitoring and Assessment, 16(3), 265–275.CrossRefGoogle Scholar
  5. Bargagli, R., & Nimis, P. L. (2002). Guidelines for the use of epiphytic lichens as biomonitors of atmospheric deposition of trace elements. In P. L. Nimis, C. Scheidegger, & P. A. Wolseley (Eds.), Monitoring with lichens-monitoring lichens (pp. 295–299). Dordrecht: Kluwer.Google Scholar
  6. Basile, A., Sorbo, S., Aprile, G., Conte, B., & Cobianchi, R. C. (2008). Comparison of the heavy metal bioaccumulation capacity of an epiphytic moss and an epiphytic lichen. Environmental Pollution, 151(2), 401–407.Google Scholar
  7. Bergamaschi, L. E., Rizzio, G., Giaveri, V., Loppi, S., & Gallorini, M. (2007). Comparison between the accumulation capacity of four lichen species transplanted to an urban site. Environmental Pollution, 148(2), 468–476.CrossRefGoogle Scholar
  8. Canciani, L. (2008). Relazione annuale relative al funzionamento ed alla sorveglianza dell’impianto di coincenerimento e termovalorizzazione di rifiuti speciali pericolosi e non pericolosi sito in zona industriale del Cosa in Comune di Spilimbergo. Spilimbergo: Mistral FVG S.r.L.Google Scholar
  9. Carpi, A. (1997). Mercury from combustion sources: A review of the chemical species emitted and their transport in the atmosphere. Water, Air, and Soil Pollution, 98, 241–254.Google Scholar
  10. Cucchi, F., Francheschini, G., & Zini, L. (2008). Hydrogeochemical investigations and groundwater provinces of the Friuli Venezia Giulia Plain aquifers, northeastern Italy. Environmental Geology, 55(5), 985–999.CrossRefGoogle Scholar
  11. Frati, L., Brunialti, G., & Loppi, S. (2005). Problems related to lichen transplants to monitor trace element deposition in repeated surveys: A case study from central Italy. Journal of Atmospheric Chemistry, 523(3), 221–230.CrossRefGoogle Scholar
  12. Gasparo, D., Castello, M., & Bargagli, R. (1989). Biomonitoraggio dell’inquinamento atmosferico tramite licheni. Studio presso un inceneritore (Macerata). Studia Geobotanica, 9, 152–250.Google Scholar
  13. Giordano, S., Adamo, P., Monaci, F., Pittao, E., Tretiach, M., & Bargagli, R. (2009). Bags with oven-dried moss for the active monitoring of airborne trace elements in urban areas. Environmental Pollution, 157(10), 2798–2805.CrossRefGoogle Scholar
  14. Herzig, R., Liebendorfer, L., Urech, M., & Ammann, K. (1989). Passive biomonitoring with lichens as a part of an integrated biological measuring system for monitoring air pollution in Switzerland. International Journal of Environmental and Analytical Chemistry, 35, 43–57.CrossRefGoogle Scholar
  15. Hylander, L. D., & Goodsite, M. E. (2006). Environmental costs of mercury pollution. Science of the Total Environment, 368, 352–370.CrossRefGoogle Scholar
  16. Loppi, S. (2006). Licheni come bioaccumulatori di elementi in traccia: Stato della ricerca in Italia. Biologia Ambientale, 20, 69–78.Google Scholar
  17. Loppi, S., Putortì, E., Pirintsos, A., & De Dominicis, V. (2000). Accumulation of heavy metals in epiphytic lichens near a municipal solid waste incinerator (Central Italy). Environmental Monitoring and Assessment, 61(3), 361–371.CrossRefGoogle Scholar
  18. Lorenzini, G., & Nali, C. (2005). Le piante e l’inquinamento dell’aria (3rd ed.). Milan: Springer Italia.Google Scholar
  19. Marti, J. (1983). Sensitivity of lichen phycobionts to dissolved air pollutants. Canadian Journal of Botany, 61, 1647–1653.Google Scholar
  20. Miszalski, Z., & Niewiadomska, E. (1993). Comparison of sulphite oxidation mechanisms in three lichen species. New Phytologist, 123, 345–349.CrossRefGoogle Scholar
  21. Munthe, J., Wangberg, I., Pirrone, N., Iverfeld, A., Ferrara, R., Ebinghaus, R., et al. (2001). Intercomparison of methods for sampling and analysis of atmospheric mercury species. Atmospheric Environment, 35(17), 3007–3017.CrossRefGoogle Scholar
  22. Pacyna, J. M., & Munch, J. (1991). Anthropogenic mercury emission in Europe. Water, Air, and Soil Pollution, 56(1), 51–61.CrossRefGoogle Scholar
  23. Perotti, M. (2004). I licheni epifiti come bioaccumulatori: Applicazione nel contenzioso ambientale. Acqua Aria, 1, 28–35.Google Scholar
  24. Pirintsos, S. A., Matsi, T., Vokou, D., Gaggi, C., & Loppi, S. (2006). Vertical distribution patterns of trace elements in an urban environment as reflected by their accumulation in lichen transplants. Journal of Atmospheric Chemistry, 54(2), 121–131.CrossRefGoogle Scholar
  25. Pittao, E. (2007). Aspetti metodologici del biomonitoraggio di inquinanti persistenti aerodiffusi mediante muschi e licheni. Ph.D. dissertation, University of Trieste, Trieste.Google Scholar
  26. Rinino, S., Bombardi, V., Giordani, P., Tretiach, M., Crisafulli, P., Monaci, F., et al. (2005). New histochemical techniques for the localization of metal ions in the lichen thallus. Lichenologist, 37(5), 463–466.CrossRefGoogle Scholar
  27. Sloof, J. E. (1995). Lichens as quantitative biomonitors for atmospheric trace-element deposition, using transplants. Atmospheric Environment, 29(1), 11–20.CrossRefGoogle Scholar
  28. Tretiach, M., & Baruffo, L. (2001). Deposizione di metalli nella pedemontana pordenonese. Uno studio basato sui licheni come bioaccumulatori. Pordenone: Provincia di Pordenone.Google Scholar
  29. Tretiach, M., & Pittao, E. (2008). Biomonitoraggio di metalli mediante licheni in cinque aree campione della provincia di Pordenone. Stato attuale e confronto con i dati del 1999. Pordenone: Provincia di Pordenone.Google Scholar
  30. Tretiach, M., Crisafulli, P., Pittao, E., Rinino, S., Roccotiello, E., & Modenesi, P. (2005). Isidia ontogeny and its effect on the CO2 gas exchanges of the epiphytic lichen Pseudevernia furfuracea (L.) Zopf. Lichenologist, 37(5), 445–462.CrossRefGoogle Scholar
  31. Tretiach, M., Adamo, P., Bargagli, R., Baruffo, L., Carletti, L., Crisafulli, P., et al. (2007). Lichen and moss bags as monitoring devices in urban areas. Part I. Influence of exposure on sample vitality. Environmental Pollution, 146(2), 380–391.CrossRefGoogle Scholar
  32. WHO (1990). Environmental health criteria 101: Methylmercury. Geneva: World Health Organization.Google Scholar
  33. WHO (1991). Environmental health criteria 118: Inorganic mercury. Geneva: World Health Organization.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Mauro Tretiach
    • 1
  • Fabio Candotto Carniel
    • 1
  • Stefano Loppi
    • 2
  • Alberto Carniel
    • 3
  • Adriano Bortolussi
    • 3
  • Denis Mazzilis
    • 4
  • Clorinda Del Bianco
    • 3
  1. 1.Dipartimento di Scienze della VitaUniversità di TriesteTriesteItaly
  2. 2.Dipartimento di Scienze AmbientaliUniversità di SienaSienaItaly
  3. 3.Dipartimento di PordenoneARPA-FVGPordenoneItaly
  4. 4.Dipartimento di UdineARPA-FVGUdineItaly

Personalised recommendations