Advertisement

Environmental Monitoring and Assessment

, Volume 175, Issue 1–4, pp 331–348 | Cite as

Arsenic-safe alternate aquifers and their hydraulic characteristics in contaminated areas of Middle Ganga Plain, Eastern India

  • Dipankar Saha
  • S. Sahu
  • P. C. Chandra
Article

Abstract

Arsenic groundwater contamination exceeding 0.05 mg/l affecting the Newer Alluvial tracts of Patna and Bhojpur, the two worst affected districts located in the Middle Ganga Plain in the Bihar state, has been studied The area is underlain by two-tier Quaternary aquifer systems within a depth of 300 m below ground level, separated by a 15–32-m-thick clay/sandy clay aquitard. The upper part (<50 m depth) of the shallow aquifer system is arsenic-contaminated. The deeper aquifer system (lying below 120–130 m depth) exhibits low arsenic load (max 0.0035 mg/l), having hydraulic conductivity between 64.88 and 82.04 m/day. Groundwater in the deeper aquifer occurs under semi-confined to confined condition due to poor hydraulic conductivity of the middle clay (4.7 × 10 − 2 − 7.2 × 10 − 3 m/day). Hydraulic head of the deeper aquifer remains close to the surface than the shallow aquifer. The two aquifer systems in the Newer Alluvium are replaced by a thick single aquifer system in the adjoining Older Alluvium, within a depth of 330 m below ground. In the arsenic-contaminated area, deeper aquifer is protected by a middle clay, which may be developed for community drinking water supply by deep tube wells having a yield capacity of 150 m3/h.

Keywords

Middle Ganga Plain Arsenic contamination Hydraulic properties Arsenic-safe aquifer Newer Alluvium Bihar State 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Acharya, S. K. (2005). Arsenic levels in groundwater from Quaternary alluvium in Ganga Plain and the Bengal Basin, Indian subcontinent. Insights into influences of stratigraphy. Gondwana Research, 8, 55–66.CrossRefGoogle Scholar
  2. Agrawal, R. K. (1977). Structure and tectonics of Indo-Gangetic plains. In V. L. S. Bhimsankarau, & V. K. Gaur (Eds.), Geophysical case histories of India (pp. 29–46). AEG Seminar, Hyderabad I.Google Scholar
  3. BIS (2003). Indian standards: Drinking water specifications (1st revision, Amendment no. 2). New Delhi: Bureau of Indian Standards.Google Scholar
  4. Berg, M., Tran, H. C., Nguyen, T. C., Schertenleib, R., & Giger, W. (2001). Arsenic contamination of groundwater and drinking water in Vietnam, a human health threat. Environment Science & Technology, 35, 2621–2626.CrossRefGoogle Scholar
  5. BGS/DPHE/MML (2001). Arsenic contamination of groundwater in Bangladesh. V 2, Final Report, British Geological Survey Technical Report, WC/00/19, Keyworth.Google Scholar
  6. Bhattacharya, P., Chatterjee, D., & Jacks, G. (1997). Occurrence of arsenic contaminated groundwater in alluvial aquifers from delta plain, eastern India, option for a safe drinking water supply. Water Resources Development, 13, 79–92.CrossRefGoogle Scholar
  7. Bose, R. N., Bose, P. K., & Mukherjee, B. B. (1976). A review of the seismic refraction and magnetic curves in the Gangetic Plain of Shabad, Gaya, Patna and Munghyr districts, Bihar. Records of the Geological Survey of Industrial, Kolkata, India, 10(2), 73–79.Google Scholar
  8. Bouwer, H. (1978). Groundwater hydrology (p. 480). New York: McGraw-Hill Book.Google Scholar
  9. Breyer, W. (1964). Zur Bestimmung der Wasserdurchlässigkeit von Kiesen und Sanden aus der Kornverteilung (pp. 165–169). Berlin Ost: Wasserwirtsch, Wassertech WWT.Google Scholar
  10. CGWB (2007). Ground water year book, Bihar. Patna: Central Ground Water Board.Google Scholar
  11. CGWB & GWD (2007). Dynamic groundwater resources of Bihar state as on 31st March 2004. Patna: Central Groundwater Board, Govt of India and Ground Water Investigation Directorate, Govt of Bihar.Google Scholar
  12. CGWB & PHED (2005). A report on status of arsenic contamination in groundwater in the state of Bihar and action Plan to mitigate it (p. 35). Patna: Central Ground Water Board and Public Health Engineering Department, Govt of Bihar.Google Scholar
  13. Chakroborty, C., & Chattopadhyay, G. S. (2001). Quaternary geology of South Ganga Plain in Bihar. Indian Minerals, 55(3&4), 133–142.Google Scholar
  14. Chakraborty, D., Mukherjee, S. C., Pati, S., Sengupta, M. K., Rahman, M. M., Chowdhury, U. K., et al. (2003). Arsenic groundwater contamination in Middle Ganga Plain, Bihar, India: A future Denger? Environmental Health Perspective, 111, 1194–1200.CrossRefGoogle Scholar
  15. Driscoll, F. G. (1986). Groundwater and wells (2nd ed., p. 1089). St Paul, Minnesota: Johnson Division.Google Scholar
  16. Gibling, M. R., Tandon, S. K., Sinha, R., & Jain, M. (2005). Discontinuity bounded alluvial sequence of the Southern Gangetic Plain, India, aggradation and degradation in response to monsoonal strength. Sedimentary Research, 75(3), 373–389.Google Scholar
  17. Govt. of Bihar (1994). Report of second Bihar State irrigation commission (Vol. 2). Patna: Govt. of Bihar, 633.Google Scholar
  18. Govt. of India (2001). Population census report of Bihar. New Delhi: Govt. of India.Google Scholar
  19. Gupta, S. (1993). Origin of Himalayan drainage outlets: Structural control on the location of alluvial megafans in the Ganga Foreland basin. In J. Macquaker (Ed.), British Sedimentological Research Group Abstract Volume (p. 36). Manchester: University of Manchester.Google Scholar
  20. Hantush, M. S. (1960). Modifications of the theory of leaky aquifers. Journal of Geophysical Research, 65, 3713–3725.CrossRefGoogle Scholar
  21. Hantush, M. S., & Jacob, C. E. (1955). Non-steady radial flow in an infinite leaky aquifer. Transaction American Geophysical Union, 36, 95–100.Google Scholar
  22. Harvey, C. F., Swartz, C. H., Badruzzaman, A. B. M., Keon-Blute, N., Yu, W., Ali, M. A., et al. (2002). Arsenic mobility and ground water extraction in Bangladesh. Science, 298, 1602–1606.CrossRefGoogle Scholar
  23. Horneman, A., VanGeen, A., Kent, D. V., Mathe, P. E., Zheng, Y., Dhar, R. K., O’Connel, S., et al. (2004). Decoupling of As and Fe release to Bangladesh groundwater under reducing conditions. Part I: Evidence from sediment profiles. Geochimica et Cosmochimica Acta, 68(17), 3459–3473.CrossRefGoogle Scholar
  24. Iqbal, S. Z. (2001). Arsenic contamination in Pakistan. UN-ESCAP Report. Expert Group meeting on Geadly, Bangkok, Thailand.Google Scholar
  25. Kresic, N. (1997). Quantitative solutions in hydrogeology and ground water modelling. Boca Raton: Lewis.Google Scholar
  26. Kruseman, G. P., & de Ridder, N. A. (1991). Analyses and evaluation of pumping test data. (Publ. no. 47, 2nd ed., p. 378). Wageningen: International Institute for Land Reclamation and Improvement.Google Scholar
  27. Lambe, T. W. (1958). The structure of compacted clay. Journal of Soil Mechanics and Foundation Engineering Division, ASCE, 84, 1–35.Google Scholar
  28. Maitra, M. K., & Ghose, N. C. (1992). Groundwater management–an application. New Delhi: Ashish.Google Scholar
  29. Mandal, B. K., Roy Choudhury, T., Samanta, G., Basu, G. K., Chowdhury, P. P., Chandra, C. R., et al. (1996). Arsenic in groundwater in seven districts of West Bengal, India—the biggest arsenic calamity in the world. Current Science, 70, 976–986.Google Scholar
  30. McArthur, J. M., Ravenscroft, P., Safiullah, S., & Thirlwall, M. F. (2001). Arsenic in ground water: Testing pollution mechanism for aquifers in Bangladesh. Water Resources Research, 37, 109–117.CrossRefGoogle Scholar
  31. McArthur, J. M., Banerjee, D. M., Hudson-Edwards, K. A., Mishra, R., Purohit, R., Ravenscroft, P., et al. (2004). Natural organic matter in sedimentary basins and its relation to arsenic in anoxic groundwater: The example of West Bengal and its world wide implications. Applied Geochemistry, 19, 1255–1293.CrossRefGoogle Scholar
  32. Morris, D. A., & Johnson, A. I. (1967). Summary of hydrologic and physical properties of rock and soil material as analyzed by the hydrologic laboratory of the US Geological Survey 1948–1960. USGS Water Supply Paper, 1839, D42.Google Scholar
  33. Mukherjee, A., Fryar, A. E., & Howell, P. D. (2007). Regional hydrostratigraphy and ground water flow modeling in the arsenic affected areas of the western Bengal basin, West Bengal. Hydrogeology Journal, 15, 1397–1418. doi: 10.1007/S10040-007-0208-7.CrossRefGoogle Scholar
  34. Newman, S. P., & Witherspoon, P. A. (1969). Theory of flow in a confined aquifer system. Water Resources Research, 5, 803–816.CrossRefGoogle Scholar
  35. Nickson, R., Mc Arthur, J. M., Ravenscroft, P., Burgess, W. G., & Rahman, M. (1998). Arsenic poisoning of groundwater in Bangladesh. Nature, 395, 338.CrossRefGoogle Scholar
  36. Poyla, D. A., Gault, A. G., Diebe, N., Feldman, P., Rosenboom, J. W., Gilligan, E., et al. (2005). Arsenic hazard in shallow Cambodian groundwater. Mineral Magazine, 69, 807–823.CrossRefGoogle Scholar
  37. Raja, J., Israili, S. H., Raja, M. A., & Sekhar, A. (2003). Groundwater resources development in Jamui district, Bihar, India. Hydrogeology Journal, 11, 396–400.CrossRefGoogle Scholar
  38. Rao, M. B. R. (1973). The subsurface geology of the Indo-Gangetic plains. Journal of the Geological Society of India, 14, 217–242.Google Scholar
  39. Ravenscroft, P., McArthur, J. M., & Hoque, B. (2001). Geochemical and palaeohydrological controls on pollution of ground water by arsenic. In W. R. Chappell, C. O. Abernathy, & R. Calderon (Eds.), Arsenic exposure and health effects IV (pp. 53–77). Oxford: Elsevier.Google Scholar
  40. Ravenscroft, P., Burgess, W. G., Ahmed, K. M., Burren, M., & Perrin, J. (2005). Arsenic in groundwater of Bengal basin, Bangladesh. Distribution, field relation and hydrogeologic setting. Hydrogeology Journal, 13, 727–751.CrossRefGoogle Scholar
  41. Saha, A. K. (1991). Genesis of arsenic in groundwater in parts of West Bengal. Annual Volume. Kolkata: Centre for Study of Man and Environment.Google Scholar
  42. Saha, D. (1999) Hydrogeological framework and ground water resources of Bihar state. Unpub. Rep. Patna, India: Central Ground Water Board.Google Scholar
  43. Saha, D. (2009). Arsenic groundwater contamination in parts of Middle Ganga Plain, Bihar. Current Science, 97(6), 753–755.Google Scholar
  44. Saha, D., Upadhyay, S., Dhar, Y. R., & Singh, R. (2007). The aquifer system and evaluation of its hydraulic parameters in parts of South Ganga Plain, Bihar, India. Journal of the Geological Society of India, 69, 1031–1041.Google Scholar
  45. Saha, D., Sreehari, S. M. S., Dwivedi, S. N., & Bhartariya, K. G. (2009a). Evaluation of hydrogeochemical processes in arsenic contaminated alluvial aquifers in parts of Mid-Ganga Basin, Bihar, Eastern India. Environmental Earth Science. doi: 10.1007/s12665-009-0392-y.Google Scholar
  46. Saha, D., Dhar, Y. R., & Vittala, S. S. (2009b). Delineation of groundwater development potential zones in parts of marginal Ganga alluvial plain in South Bihar, Eastern India. Environmental Monitoring and Assessment, 165, 179–191.CrossRefGoogle Scholar
  47. Sastri, V. V., Bhandari, L. L., Raju, A. T. R., & Dutta, A. K. (1971). Tectonic framework and subsurface stratigraphy of the Gangetic basin. Journal of Geological Society India, 12, 223–233.Google Scholar
  48. Sengupta, S., Mukherjee, P. K., Pal, T., & Some, S. (2004). Nature and origin of arsenic carriers in shallow aquifer sediments of Bengal Delta, India. Environmental Geology, 45, 1071–1081.CrossRefGoogle Scholar
  49. Singh, I. B. (1987). Sedimentological history and Quaternary deposits in Gangetic plain. Indian Journal of Earth Science, 14, 272–282.Google Scholar
  50. Singh, I. B. (2004). Late quaternary history of the Ganga Plain. Journal of Geological Society India, 64, 431–454.Google Scholar
  51. Sinha, R., Tandon, S. K., Gibling, M. R., Bhattacharjee, P. S., & Dasgupta, A. S. (2005). Late quaternary geology and alluvial stratigraphy of the Ganga basin. Himalayan Geology, 26(1), 223–240.Google Scholar
  52. Smith, A. H., Lingas, E. O., & Rahman, M. (2000). Contamination of drinking water by arsenic in Bangladesh: A public health emergency. Bull World Health Organisation, 78(9), 1093–1103.Google Scholar
  53. Von Bromssen, M., Jakariya, M., Bhattacharya, P., Ahmed, K. M., Hassan, M. A., Sracek, O., et al. (2007). Targeting low arsenic aquifers in Matlab Upazila, Southeastern Bangladesh. Science of the Total Environment, 379(2–3), 121–132.CrossRefGoogle Scholar
  54. Walton, W. C. (1962). Selected analytical methods for well and aquifer evaluation. Illinois State Water Survey, Bulletin, 49, 81.Google Scholar
  55. Wells, N. A., & Dorr, J. A. (1987). Shifting of Kosi River, northern India. Geology, 15, 204–207.CrossRefGoogle Scholar
  56. Wentworth, C. K. (1922). Scale of grade and class term for clastic sediments. Journal of Geology, 30, 377–392.CrossRefGoogle Scholar
  57. WHO (1993). Guidelines for drinking water quality (Vol. 1, 2nd ed.). Geneva: WHO.Google Scholar
  58. World Bank (2005). Towards a more effective operational response—arsenic contamination of groundwater in South and East Asian countries. VII-Technical Report, Water and Sanitation Programme, World Bank, Washington.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Central Ground Water Board, Mid-Eastern RegionPatnaIndia

Personalised recommendations