Skip to main content
Log in

Leaching of potential hazardous elements of coal cleaning rejects

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The geochemical characteristics of coal cleaning rejects (CCR) in Santa Catarina State, Brazil, were investigated. Around 3.5 million ton/ year of coal waste are dumped in Santa Catarina State. Coal beneficiation by froth flotation results in large amounts of CCR composed of coaly and mineral matter, the latter characterised by the occurrence of sulphide minerals and a broad array of leachable elements. The total and leachable contents of more than 60 elements were analysed. Atmospheric exposure promotes sulphide oxidation that releases substantial sulphate loads as well as Ca2 + , K + , Mg2 + , Cl −  and Al3 + . The metals with the most severe discharges were Zn, Cu, Mn, Co, Ni and Cd. Most trace pollutants in the CCR displayed a marked pH-dependent solubility, being immobile in near-neutral samples. The results highlight the complex interactions among mineral matter solubility, pH and the leaching of potentially hazardous elements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Akcil, A., & Koldas, S. (2006). Acid mine drainage (AMD): Causes, treatment and case studies. Journal of Cleaner Production, 14, 1139–1145.

    Article  Google Scholar 

  • Bigham, J. M., Carlson, L., & Murad, E. (1994). Schwertmannite, a new iron oxyhydroxysulphate from Pyhasalmi, Finland, and other localities. Mineralogical Magazine, 58, 641–648.

    Article  CAS  Google Scholar 

  • Borges, D., Gallindo, L., Furtado, A. S., Curtius, A. J., Welz, B., & Heitmann, U. (2006). Determination of lead in coal using direct solid sampling and high-resolution continuum source graphite furnace atomic absorption spectrometry. Microchim Acta, 154, 101–107.

    Article  CAS  Google Scholar 

  • Brookins, D. G. (1988). Eh–pH diagrams for geochemistry. New York: Springer-Verlag.

    Google Scholar 

  • Brown, G. E., Henrich, V. E., & Casey, W. H. (1999). Metal oxide surfaces and their interactions with aqueous solutions and microbial organisms. Chemical Reviews, 99, 77–174.

    Article  CAS  Google Scholar 

  • Council (2002). Decision 2003/33/EC of 19 December 2002 establishing criteria and procedures for the acceptance of waste at landfills pursuant to Article 16 of and Annex II to Directive 1999/31/EC, 16 January 2003. Official Journal of the European Union, L 11, 27–49.

    Google Scholar 

  • Cravotta, C. A. III (2008). Dissolved metals and associated constituents in abandoned coal-mine discharges, Pennsylvania, U.S.A. Part 1: Constituent quantities and correlations. Applied Geochemistry, 23, 166–202.

    Article  CAS  Google Scholar 

  • Dai, S., Ren, D., Chou, C.-L., Li, S., & Jiang, Y. (2006). Mineralogy and geochemistry of the No. 6 coal (Pennsylvanian) in the Junger Coalfield, Ordos Basin, China. International Journal of Coal Geology, 66, 253–270.

    Article  CAS  Google Scholar 

  • Dai, S., Ren, D., Zhou, Y., Chou, C.-L., Wang, X., Zhao, L., et al. (2008). Mineralogy and geochemistry of a superhigh-organic-sulfur coal, Yanshan Coalfield, Yunnan, China: Evidence for a volcanic ash component and influence by submarine exhalation. Chemical Geology, 255, 182–194.

    Article  CAS  Google Scholar 

  • Devasahayam, S. (2006). Chemistry of acid production in black coal mine washery wastes. International Journal of Mineral Processing, 79, 1–8.

    Article  CAS  Google Scholar 

  • European Committee for Standardisation (2002). Characterisation of waste—leaching—compliance test for leaching of granular waste materials and sludges—Part 2: One stage batch test at a liquid to solid ratio of 10 L/kg for materials with particle size below 4 mm. EN 12457-2:2002.

  • Finkelman, R. B. (1994). Modes of occurrence of potentially hazardous elements in coal: Levels of confidence. Fuel Processing Technology, 39, 21.

    Article  CAS  Google Scholar 

  • Furbish, W. M. J. (1963). Geological implications of jarosite pseudomorphic after pyrite. American Mineralogist, 48, 703–706.

    CAS  Google Scholar 

  • Gagliano, W. B., Brill, M. R., & Bigham, J. M. (2004). Chemistry and mineralogy of ochreous sediments in a constructed mine drainage wetland. Geochimica Et Cosmochimica Acta, 68, 2119–2128.

    Article  CAS  Google Scholar 

  • Galatto, S. L., Peterson, M., Alexandre, N. Z., da Costa, J. A. D., Izidoro, G., Sorato, L., et al. (2009). Incorporação de resíduo do tratamento de drenagem ácida em massa de cerâmica vermelha. Cerâmica, 55, 53–60.

    Article  CAS  Google Scholar 

  • Gieré, R., Blackford, M., & Smith, K. (2006). TEM study of PM2.5 emitted from coal and tire combustion in a thermal power station. Environmental Science & Technology, 40, 6235–6240.

    Article  Google Scholar 

  • Gräfe, M., Beattie, D. A., Smith, E., Skinner, W. M., & Singh, B. (2008). Copper and arsenate co-sorption at the mineral–water interfaces of goethite and jarosite. Journal of Colloid and Interface Science, 322, 399–413.

    Article  Google Scholar 

  • Hochella, M. F., Lower, S. K., & Maurice, P. A. (2008). Nanominerals, mineral nanoparticles, and Earth systems. Science, 319, 1631–1635.

    Article  CAS  Google Scholar 

  • Huang, X., & Finkelman, R. B. (2008). Understanding the chemical properties of macerals and minerals in coal and its potential application for occupational lung disease prevention. Journal of Toxicology and Environmental Health. Part B, 11, 45–67.

    Article  CAS  Google Scholar 

  • Izquierdo, M., Moreno, N., Font, O., Querol, X., Alvarez, E., Antenucci, D., et al. (2008). Influence of the co-firing on the leaching of trace pollutants from coal fly ash. Fuel, 87, 1958–1966.

    Article  CAS  Google Scholar 

  • Kalkreuth, W., Holz, M., Kern, M., Machado, G., Mexias, A., Silva, M. B., et al. (2006). Petrology and chemistry of Permian coals from the Paraná Basin: 1. Santa Terezinha, Leão-Butiá and Candiota Coalfields, Rio Grande do Sul, Brazil. International Journal of Coal Geology, 68, 79–116.

    Article  CAS  Google Scholar 

  • Kan, A. T., Fu, G., & Tomson, M. B. (2003). Effect of methanol and ethylene glycol on sulfates and halite scale formation. Industrial & Engineering Chemistry Research, 42, 2399–2408.

    Article  CAS  Google Scholar 

  • Kimball, B. A., Callender, E., & Axtmann, E. V. (1995). Effects of colloids on metal transport in a river receiving acid mine drainage, upper Arkansas River, Colorado, U.S.A. Applied Geochemistry, 10, 285–306.

    Article  CAS  Google Scholar 

  • Langmuir, D. (1997). Aqueous environmental geochemistry. New Jersey: Prentice-Hall.

    Google Scholar 

  • Larsen, D., & Mann, R. (2005). Origin of high manganese concentrations in coal mine drainage, eastern Tennessee. Journal of Geochemical Exploration, 86, 143–163.

    Article  CAS  Google Scholar 

  • Lattuada, R. M., Menezes, C. T. B., Pavei, P. T., Peralba, M. C. R., & Dos Santos, J. H. Z. (2009). Determination of metals by total reflection X-ray fluorescence and evaluation of toxicity of a river impacted by coal mining in the south of Brazil. Journal of Hazardous Materials, 163, 531–537.

    Article  CAS  Google Scholar 

  • Lee, P., Kang, M., Choi, S., & Touray, J. (2005). Sulfide oxidation and the natural attenuation of arsenic and trace metals in the waste rocks of the abandoned Seobo tungsten mine, Korea. Applied Geochemistry, 20, 1687–1703.

    Article  CAS  Google Scholar 

  • López, I. C., & Ward, C. R. (2008). Coposition and mode of occurrence of minerals matter in some Colombian Coals. International Journal of Coal Geology, 73, 3–18.

    Article  Google Scholar 

  • Marcello, R. R., Galatob, S., Petersona, M., Riellac, H. G., & Bernardin, A. M. (2008). Inorganic pigments made from the recycling of coal mine drainage treatment sludge. Journal of Environmental Management, 88, 1280–1284.

    Article  CAS  Google Scholar 

  • McCarty, D. K., Moore, J. N., & Marcus, W. A. (1998). Mineralogy and trace element association in an acid mine drainage iron oxide precipitate; comparison of selective extractions. Applied Geochemistry, 13, 165–176.

    Article  CAS  Google Scholar 

  • Milne, C. J., Kinniburgh, D. G., van Riemsdijk, W. H., & Tipping, E. (2003). Generic NICA-Donnan model parameters for metal-ion binding by humic substances. Environmental Science & Technology, 37, 958–971.

    Article  CAS  Google Scholar 

  • Mishra, V. K., Upadhyaya, A. R., Pandey, S. K., & Tripathi, B. D. (2008). Heavy metal pollution induced pollution induced due to coal mining effluent on surrounding aquatic ecosystem and its management through naturally occurring aquatic macrophytes. Bioresource Technology, 99, 930–936.

    Article  CAS  Google Scholar 

  • Okuyama, N., Sakai, K., Komatsu, N., & Kumagai, H. (2009). Thermal extraction behavior of coal. In Proceedings of the international conference on coal science & technology (ICCS&T), South Africa.

  • Piñeres, J., Barnaza, J., & Blandon, A. (2009). Effect of pH, air velocity and frother concentration on vitrinite recovery using flotation column. In Proceedings of the international conference on coal science & technology (ICCS&T), South Africa.

  • Pinetown, K. L., Ward, C. R., & Westhuizen, W. A. (2007). Quantitative evaluation of minerals in coal deposits in the Witbank and Highveld Coalfields, and the potential impact on acid mine drainage. International Journal of Coal Geology, 70, 166–183.

    Article  CAS  Google Scholar 

  • Pires, M., & Querol, X. (2004). Characterization of Candiota (South Brazil) coal and combustion by-product. International Journal of Coal Geology, 60, 57–72.

    Article  CAS  Google Scholar 

  • Poch, R. M., Thomas, B. P., Fitzpatrick, R. W., & Merry, R. H. (2009). Micromorphological evidence for mineral weathering pathways in a coastal acid sulfate soil sequence with Mediterranean-type climate, South Australia. Australian Journal of Soil Research, 47, 403–422.

    Article  CAS  Google Scholar 

  • Querol, X., Izquierdo, M., Monfort, E., Alvarez, E., Font, O., Moreno, T., et al. (2008). Environmental characterization of burnt coal gangue banks at Yangquan, Shanxi Province, China. International Journal of Coal Geology, 75, 93–104.

    Article  CAS  Google Scholar 

  • Querol, X., Whateley, M. K. G., Fernandez-Turiel, J. L., & Tuncali, E. (1997). Geological controls on the mineralogy and geochemistry of the Beypazari lignite, central Anatolia, Turkey. International Journal of Coal Geology, 33, 255–271.

    Article  CAS  Google Scholar 

  • Ren, D., Xub, D., & Zhao, F. (2004). A preliminary study on the enrichment mechanism and occurrence of hazardous trace elements in the Tertiary lignite from the Shenbei coalfield, China. International Journal of Coal Geology, 57, 187–196.

    Article  CAS  Google Scholar 

  • Richards, B. G., Coulthard, M. A., & Toh, C. T. (1981). Analysis of slope stability at Goonyella Mine. Canadian Geotechnical Journal, 18, 79–194.

    Article  Google Scholar 

  • Rigol, A., Mateu, J., Gonzalez-Nunez, R., Rauret, G., & Vidal, M. (2009). pH Stat vs. single extraction tests to evaluate heavy metals and arsenic leachability in environmental samples. Analytica Chimica Acta, 632, 69–79.

    Article  CAS  Google Scholar 

  • Rimstidt, J. D., & Vaughan, D. J. (2003). Pyrite oxidation: A state-of-the-art assessment of the reaction mechanism. Geochimica Et Cosmochimica Acta, 67, 873–880.

    Article  CAS  Google Scholar 

  • Sakurovs, R., French, D., & Grigore, M. (2007). Quantification of mineral matter in commercial cokes and their parent coals. International Journal of Coal Geology, 72, 81–88.

    Article  CAS  Google Scholar 

  • Sasaki, K. (1997). Raman study of the microbially mediated dissolution of pyrite by Thiobacillus ferrooxidans. The Canadian Mineralogist, 35, 999–1008.

    CAS  Google Scholar 

  • Sasowsky, I. D., Foos, A., & Miller, C. M. (2000). Lithic controls on the removal or iron and remediation of acidic mine drainage. Water Research, 34, 2742–2746.

    Article  CAS  Google Scholar 

  • Silva, L. F. O., & DaBoit, K. (2010). Nanominerals and nanoparticles in feed coal and bottom ash: implications for human health effects. Environmental Monitoring and Assessment. doi:10.1007/s10661-010-1449-9.

    Google Scholar 

  • Silva, L. F. O., Macias, F., Oliveira, M. L. S., da Boit, K. M., & Waanders, F. (2010). Coal cleaning residues and fe-minerals implications. Environmental Monitoring and Assessment. doi:10.1007/s10661-010-1340-8.

    Google Scholar 

  • Silva, L. F. O., Moreno, T., & Querol, X. (2009a). An introductory TEM study of Fe-nanominerals within coal fly ash. Science of the Total Environment, 407, 4972–4974.

    Article  CAS  Google Scholar 

  • Silva, L. F. O., & Oliveria, M. L. S. (2010). A preliminary study of coal mining drainage and environmental health in the Santa Catarina region, Brazil. Environmental Geochemistry and Health. doi:10.1007/s10653-010-9322-x.

    Google Scholar 

  • Silva, L. F. O., Oliveira, M. L. S., da Boit, K. M., & Finkelman, R. B. (2009b). Characterization of Santa Catarina (Brazil) coal with respect to human health and environmental concerns. Environmental Geochemistry and Health, 31, 475–485.

    Article  CAS  Google Scholar 

  • Simona, R., Andreas, B., & Stefan, P. (2004). Formation and stability of schwertmannite in acidic mining lakes. Geochimica Et Cosmochimica Acta, 68, 1185–1197.

    Article  Google Scholar 

  • Singh, J., & Kant, S. (2007). Impact of coal mining on leaf morphology and stomatal index of plants in Kalakote range, Rajouri (J&K), India. Nature Environment and Pollution Technology, 6, 715–718.

    CAS  Google Scholar 

  • Speck, R. C., Huang, S. L., & Kroger, E. B. (1993). Large-scale slope movements and their effect on spoil-pile stability in Interior Alaska. International Journal of Mining, Reclamation and Environment, 76, 161–166.

    Article  Google Scholar 

  • Stead, D., & Singh, R. (1989). Loosewall stability in United Kingdom surface coal mines. Canadian Geotechnical Journal, 26, 235–245.

    Article  Google Scholar 

  • Steiakakis, E., Kavouridis, K., & Monopolis, D. (2009). Large scale failure of the external waste dump at the “South Field” lignite mine, Northern Greece. Engineering Geologist, 104, 269–79

    Article  Google Scholar 

  • Stoffregen, R. E., Alpers, C. N., & Jambor, J. L. (2000). Alunite–jarosite crystallography, thermodynamics, and geochronology. Sulfate minerals: Crystallography, geochemistry, and environmental significance. Reviews in Mineralogy 40, 453–479 (Mineralogical Society of America).

    Article  CAS  Google Scholar 

  • Taute, L., leRoux, M., & Campbell, Q. P. (2009). The influence of screening conditions on the generation of fires during coal processing. In Proceedings of the international conference on coal science & technology (ICCS&T), South Africa.

  • Weber, P. A., Skinner, W. M., Hughes, J. B., Lindsay, P., & Moore, T. A. (2006). Source of Ni in coal mine acid rock drainage, West Coast, New Zealand. International Journal of Coal Geology, 67, 214–220.

    Article  CAS  Google Scholar 

  • Webster, J. G., Swedlund, P. J., & Webster, K. S. (1998). Trace metal adsorption onto acid mine drainage Fe(III) oxyhydroxysulphate. Environmental Science & Technology, 32, 1361–1368.

    Article  CAS  Google Scholar 

  • Yu, J., Heo, B., Choi, I., Cho, J., & Chang, H. (1999). Apparent solubilities of schwertmannite and ferrihydrite in natural stream waters polluted by mine drainage. Geochimica Et Cosmochimica Acta, 63, 3407–3416.

    Article  CAS  Google Scholar 

  • Yue, M., & Zhao, F. (2008). Leaching experiments to study the release of trace elements from mineral separates from Chinese coals. International Journal of Coal Geology, 73, 43–51.

    Article  CAS  Google Scholar 

  • Zhao, Y., Zhang, J., Chou, C. L., Li, Y., Wang, Z., Ge, Y., et al. (2008). Trace element emissions from spontaneous combustion of gob piles in coal mines, Shanxi, China. International Journal of Coal Geology, 73, 52–62.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis F. O. Silva.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Silva, L.F.O., Izquierdo, M., Querol, X. et al. Leaching of potential hazardous elements of coal cleaning rejects. Environ Monit Assess 175, 109–126 (2011). https://doi.org/10.1007/s10661-010-1497-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-010-1497-1

Keywords

Navigation