Environmental Monitoring and Assessment

, Volume 175, Issue 1–4, pp 109–126 | Cite as

Leaching of potential hazardous elements of coal cleaning rejects

  • Luis F. O. Silva
  • Maria Izquierdo
  • Xavier Querol
  • Robert B. Finkelman
  • Marcos L. S. Oliveira
  • Marcus Wollenschlager
  • Mark Towler
  • Rafael Pérez-López
  • Felipe Macias


The geochemical characteristics of coal cleaning rejects (CCR) in Santa Catarina State, Brazil, were investigated. Around 3.5 million ton/ year of coal waste are dumped in Santa Catarina State. Coal beneficiation by froth flotation results in large amounts of CCR composed of coaly and mineral matter, the latter characterised by the occurrence of sulphide minerals and a broad array of leachable elements. The total and leachable contents of more than 60 elements were analysed. Atmospheric exposure promotes sulphide oxidation that releases substantial sulphate loads as well as Ca2 + , K + , Mg2 + , Cl −  and Al3 + . The metals with the most severe discharges were Zn, Cu, Mn, Co, Ni and Cd. Most trace pollutants in the CCR displayed a marked pH-dependent solubility, being immobile in near-neutral samples. The results highlight the complex interactions among mineral matter solubility, pH and the leaching of potentially hazardous elements.


Brazilian coal mining Coal beneficiation Leaching Trace pollutants 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Akcil, A., & Koldas, S. (2006). Acid mine drainage (AMD): Causes, treatment and case studies. Journal of Cleaner Production, 14, 1139–1145.CrossRefGoogle Scholar
  2. Bigham, J. M., Carlson, L., & Murad, E. (1994). Schwertmannite, a new iron oxyhydroxysulphate from Pyhasalmi, Finland, and other localities. Mineralogical Magazine, 58, 641–648.CrossRefGoogle Scholar
  3. Borges, D., Gallindo, L., Furtado, A. S., Curtius, A. J., Welz, B., & Heitmann, U. (2006). Determination of lead in coal using direct solid sampling and high-resolution continuum source graphite furnace atomic absorption spectrometry. Microchim Acta, 154, 101–107.CrossRefGoogle Scholar
  4. Brookins, D. G. (1988). Eh–pH diagrams for geochemistry. New York: Springer-Verlag.Google Scholar
  5. Brown, G. E., Henrich, V. E., & Casey, W. H. (1999). Metal oxide surfaces and their interactions with aqueous solutions and microbial organisms. Chemical Reviews, 99, 77–174.CrossRefGoogle Scholar
  6. Council (2002). Decision 2003/33/EC of 19 December 2002 establishing criteria and procedures for the acceptance of waste at landfills pursuant to Article 16 of and Annex II to Directive 1999/31/EC, 16 January 2003. Official Journal of the European Union, L 11, 27–49.Google Scholar
  7. Cravotta, C. A. III (2008). Dissolved metals and associated constituents in abandoned coal-mine discharges, Pennsylvania, U.S.A. Part 1: Constituent quantities and correlations. Applied Geochemistry, 23, 166–202.CrossRefGoogle Scholar
  8. Dai, S., Ren, D., Chou, C.-L., Li, S., & Jiang, Y. (2006). Mineralogy and geochemistry of the No. 6 coal (Pennsylvanian) in the Junger Coalfield, Ordos Basin, China. International Journal of Coal Geology, 66, 253–270.CrossRefGoogle Scholar
  9. Dai, S., Ren, D., Zhou, Y., Chou, C.-L., Wang, X., Zhao, L., et al. (2008). Mineralogy and geochemistry of a superhigh-organic-sulfur coal, Yanshan Coalfield, Yunnan, China: Evidence for a volcanic ash component and influence by submarine exhalation. Chemical Geology, 255, 182–194.CrossRefGoogle Scholar
  10. Devasahayam, S. (2006). Chemistry of acid production in black coal mine washery wastes. International Journal of Mineral Processing, 79, 1–8.CrossRefGoogle Scholar
  11. European Committee for Standardisation (2002). Characterisation of waste—leaching—compliance test for leaching of granular waste materials and sludges—Part 2: One stage batch test at a liquid to solid ratio of 10 L/kg for materials with particle size below 4 mm. EN 12457-2:2002.Google Scholar
  12. Finkelman, R. B. (1994). Modes of occurrence of potentially hazardous elements in coal: Levels of confidence. Fuel Processing Technology, 39, 21.CrossRefGoogle Scholar
  13. Furbish, W. M. J. (1963). Geological implications of jarosite pseudomorphic after pyrite. American Mineralogist, 48, 703–706.Google Scholar
  14. Gagliano, W. B., Brill, M. R., & Bigham, J. M. (2004). Chemistry and mineralogy of ochreous sediments in a constructed mine drainage wetland. Geochimica Et Cosmochimica Acta, 68, 2119–2128.CrossRefGoogle Scholar
  15. Galatto, S. L., Peterson, M., Alexandre, N. Z., da Costa, J. A. D., Izidoro, G., Sorato, L., et al. (2009). Incorporação de resíduo do tratamento de drenagem ácida em massa de cerâmica vermelha. Cerâmica, 55, 53–60.CrossRefGoogle Scholar
  16. Gieré, R., Blackford, M., & Smith, K. (2006). TEM study of PM2.5 emitted from coal and tire combustion in a thermal power station. Environmental Science & Technology, 40, 6235–6240.CrossRefGoogle Scholar
  17. Gräfe, M., Beattie, D. A., Smith, E., Skinner, W. M., & Singh, B. (2008). Copper and arsenate co-sorption at the mineral–water interfaces of goethite and jarosite. Journal of Colloid and Interface Science, 322, 399–413.CrossRefGoogle Scholar
  18. Hochella, M. F., Lower, S. K., & Maurice, P. A. (2008). Nanominerals, mineral nanoparticles, and Earth systems. Science, 319, 1631–1635.CrossRefGoogle Scholar
  19. Huang, X., & Finkelman, R. B. (2008). Understanding the chemical properties of macerals and minerals in coal and its potential application for occupational lung disease prevention. Journal of Toxicology and Environmental Health. Part B, 11, 45–67.CrossRefGoogle Scholar
  20. Izquierdo, M., Moreno, N., Font, O., Querol, X., Alvarez, E., Antenucci, D., et al. (2008). Influence of the co-firing on the leaching of trace pollutants from coal fly ash. Fuel, 87, 1958–1966.CrossRefGoogle Scholar
  21. Kalkreuth, W., Holz, M., Kern, M., Machado, G., Mexias, A., Silva, M. B., et al. (2006). Petrology and chemistry of Permian coals from the Paraná Basin: 1. Santa Terezinha, Leão-Butiá and Candiota Coalfields, Rio Grande do Sul, Brazil. International Journal of Coal Geology, 68, 79–116.CrossRefGoogle Scholar
  22. Kan, A. T., Fu, G., & Tomson, M. B. (2003). Effect of methanol and ethylene glycol on sulfates and halite scale formation. Industrial & Engineering Chemistry Research, 42, 2399–2408.CrossRefGoogle Scholar
  23. Kimball, B. A., Callender, E., & Axtmann, E. V. (1995). Effects of colloids on metal transport in a river receiving acid mine drainage, upper Arkansas River, Colorado, U.S.A. Applied Geochemistry, 10, 285–306.CrossRefGoogle Scholar
  24. Langmuir, D. (1997). Aqueous environmental geochemistry. New Jersey: Prentice-Hall.Google Scholar
  25. Larsen, D., & Mann, R. (2005). Origin of high manganese concentrations in coal mine drainage, eastern Tennessee. Journal of Geochemical Exploration, 86, 143–163.CrossRefGoogle Scholar
  26. Lattuada, R. M., Menezes, C. T. B., Pavei, P. T., Peralba, M. C. R., & Dos Santos, J. H. Z. (2009). Determination of metals by total reflection X-ray fluorescence and evaluation of toxicity of a river impacted by coal mining in the south of Brazil. Journal of Hazardous Materials, 163, 531–537.CrossRefGoogle Scholar
  27. Lee, P., Kang, M., Choi, S., & Touray, J. (2005). Sulfide oxidation and the natural attenuation of arsenic and trace metals in the waste rocks of the abandoned Seobo tungsten mine, Korea. Applied Geochemistry, 20, 1687–1703.CrossRefGoogle Scholar
  28. López, I. C., & Ward, C. R. (2008). Coposition and mode of occurrence of minerals matter in some Colombian Coals. International Journal of Coal Geology, 73, 3–18.CrossRefGoogle Scholar
  29. Marcello, R. R., Galatob, S., Petersona, M., Riellac, H. G., & Bernardin, A. M. (2008). Inorganic pigments made from the recycling of coal mine drainage treatment sludge. Journal of Environmental Management, 88, 1280–1284.CrossRefGoogle Scholar
  30. McCarty, D. K., Moore, J. N., & Marcus, W. A. (1998). Mineralogy and trace element association in an acid mine drainage iron oxide precipitate; comparison of selective extractions. Applied Geochemistry, 13, 165–176.CrossRefGoogle Scholar
  31. Milne, C. J., Kinniburgh, D. G., van Riemsdijk, W. H., & Tipping, E. (2003). Generic NICA-Donnan model parameters for metal-ion binding by humic substances. Environmental Science & Technology, 37, 958–971.CrossRefGoogle Scholar
  32. Mishra, V. K., Upadhyaya, A. R., Pandey, S. K., & Tripathi, B. D. (2008). Heavy metal pollution induced pollution induced due to coal mining effluent on surrounding aquatic ecosystem and its management through naturally occurring aquatic macrophytes. Bioresource Technology, 99, 930–936.CrossRefGoogle Scholar
  33. Okuyama, N., Sakai, K., Komatsu, N., & Kumagai, H. (2009). Thermal extraction behavior of coal. In Proceedings of the international conference on coal science & technology (ICCS&T), South Africa.Google Scholar
  34. Piñeres, J., Barnaza, J., & Blandon, A. (2009). Effect of pH, air velocity and frother concentration on vitrinite recovery using flotation column. In Proceedings of the international conference on coal science & technology (ICCS&T), South Africa.Google Scholar
  35. Pinetown, K. L., Ward, C. R., & Westhuizen, W. A. (2007). Quantitative evaluation of minerals in coal deposits in the Witbank and Highveld Coalfields, and the potential impact on acid mine drainage. International Journal of Coal Geology, 70, 166–183.CrossRefGoogle Scholar
  36. Pires, M., & Querol, X. (2004). Characterization of Candiota (South Brazil) coal and combustion by-product. International Journal of Coal Geology, 60, 57–72.CrossRefGoogle Scholar
  37. Poch, R. M., Thomas, B. P., Fitzpatrick, R. W., & Merry, R. H. (2009). Micromorphological evidence for mineral weathering pathways in a coastal acid sulfate soil sequence with Mediterranean-type climate, South Australia. Australian Journal of Soil Research, 47, 403–422.CrossRefGoogle Scholar
  38. Querol, X., Izquierdo, M., Monfort, E., Alvarez, E., Font, O., Moreno, T., et al. (2008). Environmental characterization of burnt coal gangue banks at Yangquan, Shanxi Province, China. International Journal of Coal Geology, 75, 93–104.CrossRefGoogle Scholar
  39. Querol, X., Whateley, M. K. G., Fernandez-Turiel, J. L., & Tuncali, E. (1997). Geological controls on the mineralogy and geochemistry of the Beypazari lignite, central Anatolia, Turkey. International Journal of Coal Geology, 33, 255–271.CrossRefGoogle Scholar
  40. Ren, D., Xub, D., & Zhao, F. (2004). A preliminary study on the enrichment mechanism and occurrence of hazardous trace elements in the Tertiary lignite from the Shenbei coalfield, China. International Journal of Coal Geology, 57, 187–196.CrossRefGoogle Scholar
  41. Richards, B. G., Coulthard, M. A., & Toh, C. T. (1981). Analysis of slope stability at Goonyella Mine. Canadian Geotechnical Journal, 18, 79–194.CrossRefGoogle Scholar
  42. Rigol, A., Mateu, J., Gonzalez-Nunez, R., Rauret, G., & Vidal, M. (2009). pH Stat vs. single extraction tests to evaluate heavy metals and arsenic leachability in environmental samples. Analytica Chimica Acta, 632, 69–79.CrossRefGoogle Scholar
  43. Rimstidt, J. D., & Vaughan, D. J. (2003). Pyrite oxidation: A state-of-the-art assessment of the reaction mechanism. Geochimica Et Cosmochimica Acta, 67, 873–880.CrossRefGoogle Scholar
  44. Sakurovs, R., French, D., & Grigore, M. (2007). Quantification of mineral matter in commercial cokes and their parent coals. International Journal of Coal Geology, 72, 81–88.CrossRefGoogle Scholar
  45. Sasaki, K. (1997). Raman study of the microbially mediated dissolution of pyrite by Thiobacillus ferrooxidans. The Canadian Mineralogist, 35, 999–1008.Google Scholar
  46. Sasowsky, I. D., Foos, A., & Miller, C. M. (2000). Lithic controls on the removal or iron and remediation of acidic mine drainage. Water Research, 34, 2742–2746.CrossRefGoogle Scholar
  47. Silva, L. F. O., & DaBoit, K. (2010). Nanominerals and nanoparticles in feed coal and bottom ash: implications for human health effects. Environmental Monitoring and Assessment. doi: 10.1007/s10661-010-1449-9.Google Scholar
  48. Silva, L. F. O., Macias, F., Oliveira, M. L. S., da Boit, K. M., & Waanders, F. (2010). Coal cleaning residues and fe-minerals implications. Environmental Monitoring and Assessment. doi: 10.1007/s10661-010-1340-8.Google Scholar
  49. Silva, L. F. O., Moreno, T., & Querol, X. (2009a). An introductory TEM study of Fe-nanominerals within coal fly ash. Science of the Total Environment, 407, 4972–4974.CrossRefGoogle Scholar
  50. Silva, L. F. O., & Oliveria, M. L. S. (2010). A preliminary study of coal mining drainage and environmental health in the Santa Catarina region, Brazil. Environmental Geochemistry and Health. doi: 10.1007/s10653-010-9322-x.Google Scholar
  51. Silva, L. F. O., Oliveira, M. L. S., da Boit, K. M., & Finkelman, R. B. (2009b). Characterization of Santa Catarina (Brazil) coal with respect to human health and environmental concerns. Environmental Geochemistry and Health, 31, 475–485.CrossRefGoogle Scholar
  52. Simona, R., Andreas, B., & Stefan, P. (2004). Formation and stability of schwertmannite in acidic mining lakes. Geochimica Et Cosmochimica Acta, 68, 1185–1197.CrossRefGoogle Scholar
  53. Singh, J., & Kant, S. (2007). Impact of coal mining on leaf morphology and stomatal index of plants in Kalakote range, Rajouri (J&K), India. Nature Environment and Pollution Technology, 6, 715–718.Google Scholar
  54. Speck, R. C., Huang, S. L., & Kroger, E. B. (1993). Large-scale slope movements and their effect on spoil-pile stability in Interior Alaska. International Journal of Mining, Reclamation and Environment, 76, 161–166.CrossRefGoogle Scholar
  55. Stead, D., & Singh, R. (1989). Loosewall stability in United Kingdom surface coal mines. Canadian Geotechnical Journal, 26, 235–245.CrossRefGoogle Scholar
  56. Steiakakis, E., Kavouridis, K., & Monopolis, D. (2009). Large scale failure of the external waste dump at the “South Field” lignite mine, Northern Greece. Engineering Geologist, 104, 269–79CrossRefGoogle Scholar
  57. Stoffregen, R. E., Alpers, C. N., & Jambor, J. L. (2000). Alunite–jarosite crystallography, thermodynamics, and geochronology. Sulfate minerals: Crystallography, geochemistry, and environmental significance. Reviews in Mineralogy 40, 453–479 (Mineralogical Society of America).CrossRefGoogle Scholar
  58. Taute, L., leRoux, M., & Campbell, Q. P. (2009). The influence of screening conditions on the generation of fires during coal processing. In Proceedings of the international conference on coal science & technology (ICCS&T), South Africa.Google Scholar
  59. Weber, P. A., Skinner, W. M., Hughes, J. B., Lindsay, P., & Moore, T. A. (2006). Source of Ni in coal mine acid rock drainage, West Coast, New Zealand. International Journal of Coal Geology, 67, 214–220.CrossRefGoogle Scholar
  60. Webster, J. G., Swedlund, P. J., & Webster, K. S. (1998). Trace metal adsorption onto acid mine drainage Fe(III) oxyhydroxysulphate. Environmental Science & Technology, 32, 1361–1368.CrossRefGoogle Scholar
  61. Yu, J., Heo, B., Choi, I., Cho, J., & Chang, H. (1999). Apparent solubilities of schwertmannite and ferrihydrite in natural stream waters polluted by mine drainage. Geochimica Et Cosmochimica Acta, 63, 3407–3416.CrossRefGoogle Scholar
  62. Yue, M., & Zhao, F. (2008). Leaching experiments to study the release of trace elements from mineral separates from Chinese coals. International Journal of Coal Geology, 73, 43–51.CrossRefGoogle Scholar
  63. Zhao, Y., Zhang, J., Chou, C. L., Li, Y., Wang, Z., Ge, Y., et al. (2008). Trace element emissions from spontaneous combustion of gob piles in coal mines, Shanxi, China. International Journal of Coal Geology, 73, 52–62.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Luis F. O. Silva
    • 1
    • 6
  • Maria Izquierdo
    • 2
  • Xavier Querol
    • 2
  • Robert B. Finkelman
    • 3
  • Marcos L. S. Oliveira
    • 1
  • Marcus Wollenschlager
    • 1
  • Mark Towler
    • 4
  • Rafael Pérez-López
    • 2
    • 5
  • Felipe Macias
    • 6
  1. 1.Catarinense Institut of Environmental Research and Human Development—IPADHCSanta CatarinaBrazil
  2. 2.Institute of Environmental Assessment and Water Research (IDÆA-CSIC)BarcelonaSpain
  3. 3.Department of GeosciencesUniversity of Texas at DallasRichardsonUSA
  4. 4.Inamori School of EngineeringAlfred UniversityAlfredUSA
  5. 5.Department of GeologyUniversity of HuelvaHuelvaSpain
  6. 6.Department of Soil ScienceUniversity of Santiago de CompostelaSantiago de CompostelaSpain

Personalised recommendations