Environmental Monitoring and Assessment

, Volume 175, Issue 1–4, pp 87–101 | Cite as

Choice of macroinvertebrate metrics to evaluate stream conditions in Atlantic Forest, Brazil

  • Marcia Thais Suriano
  • Alaide A. Fonseca-Gessner
  • Fabio O. Roque
  • Claudio G. Froehlich


The development of biomonitoring programs based on the macroinvertebrate community requires the understanding of species distribution patterns, as well as of the responses of the community to anthropogenic stressors. In this study, 49 metrics were tested as potential means of assessing the condition of 29 first- and second-order streams located in areas of differing types of land use in São Paulo State, Brazil. Of the sampled streams, 15 were in well-preserved regions in the Atlantic Forest, 5 were among sugarcane cultivations, 5 were in areas of pasture, and 4 were among eucalyptus plantations. The metrics were assessed against the following criteria: (1) predictable response to the impact of human activity; (2) highest taxonomic resolution, and (3) operational and theoretical simplicity. We found that 18 metrics were correlated with the environmental and spatial predictors used, and seven of these satisfied the selection criteria and are thus candidates for inclusion in a multimetric system to assess low-order streams in São Paulo State. These metrics are family richness; Ephemeroptera, Plecoptera and Trichoptera (EPT) richness; proportion of Megaloptera and Hirudinea; proportion of EPT; Shannon diversity index for genus; and adapted Biological Monitoring Work Party biotic index.


Atlantic forest Aquatic insects Biological assessment Biomonitoring Multimetric system 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allan, J. D. (2004). Landscape and riverscapes: The influence of land use on stream ecosystems. Annual Review of Ecology, Evolution, and Systematics, 35, 257–284.CrossRefGoogle Scholar
  2. Allan, J. D., & Flecker, A. S. (1993). Biodiversity conservation in running waters. BioScience, 43, 32–43.CrossRefGoogle Scholar
  3. Ayres, M., Ayres, Jr., M., Ayres, D. L., & Santos, A. S. (2000). BioEstat v. 2.0: Aplicações estatísticas nas áreas das ciências biológicas e médicas. Belém, Brazil: Sociedade Civil Mamirauá.Google Scholar
  4. Bain, M. B., & Stevenson, N. J. (1999). Aquatic habitat assessment: Common methods. Bethesda: American Fisheries Society.Google Scholar
  5. Baptista, D. F., Buss, D. F., Egler, M., Giovanelli, A., Silveira, M. P., & Nessimian, J. L. (2007). A multimetric index based on benthic macroinvertebrates for evaluation of Atlantic Forest streams at Rio de Janeiro State, Brazil. Hydrobiologia, 575, 83–94.CrossRefGoogle Scholar
  6. Barbour, M. T., Plafkin, J. L., Bradley, B. P., Graves, C. G., & Wisseman, R. W. (1992). Evaluation of EPA’s rapid bioassessment benthic metrics: Metric redundancy and variability among reference stream sites. Environmental Toxicology and Chemistry, 11, 437–449.CrossRefGoogle Scholar
  7. Barbour, M. T., Gerritsen, J., Griffith, G. E., Frydenbourg, R., McCarron, E., White, J. S., et al. (1996). A framework for biological criteria for Florida streams using benthic macroinvertebrates. Journal of the North American Benthological Society, 15, 185–211.CrossRefGoogle Scholar
  8. Bonada, N., Prat, N., Resh, V. H., & Statzner, B. (2006). Developments in aquatic insect biomonitoring: a comparative analysis of recent approaches. Annual Review of Entomology, 51, 495–523.CrossRefGoogle Scholar
  9. Borcard, D., & Legendre, P. (2002). All-scale spatial analysis of ecological data by means of principal coordinates of neighbour matrices. Ecological Modelling, 153, 51–68.CrossRefGoogle Scholar
  10. Borcard, D., Legendre, P., Avois-Jacquet, C., & Tuomisto, H. (2004). Dissecting the spatial structure of ecological data at multiple scales. Ecology, 85, 1826–1832.CrossRefGoogle Scholar
  11. Cairns J. Jr., & Pratt, J. R. (1993). A history of biological monitoring using benthic macroinvertebrates. In: D. M. Rosenberg, & V. H. Resh (Eds.), Freshwater biomonitoring and benthic macroinvertebrate (pp.10–27). New York: Chapman & Hall.Google Scholar
  12. Clarke, A., Nally, R. M., Bond, N., & Lake, P. S. (2008). Macroinvertebrate diversity in headwater streams: A review. Freshwater Biology, 53, 1707–1721.CrossRefGoogle Scholar
  13. Cummins, K. W., & Klug, M. J. (1979). Feeding ecology of stream invertebrates. Annual Review of Ecology and Systematics, 10, 147–72.CrossRefGoogle Scholar
  14. Cummins, K. W., Merritt, R. W., & Andrade, P. C. N. (2005). The use of invertebrate functional groups to characterize ecosystem attributes in selected streams and rivers in south Brazil. Studies on Neotropical Fauna and Environment, 40(1), 69–89.CrossRefGoogle Scholar
  15. Diniz-Filho, J. A. F., & Bini, L. M. (2005). Modelling geographical patterns in species richness using eigenvector based spatial filters. Global Ecology and Biogeography, 14, 177–185.CrossRefGoogle Scholar
  16. Feld, C. K., & Hering, D. (2007). Community structure or function: Effects of environmental stress on benthic macroinvertebrates at different spatial scales. Freshwater Biology, 52, 1380–1399.CrossRefGoogle Scholar
  17. Ferreira-Peruquetti, P. S. (2006). Distribuição espacial e temporal das espécies de Odonata da Estação Ecológica de Jataí e arredores, Luiz Antônio, SP. In: Estudos integrados em ecossistemas. Estação Ecológica de Jataí (pp. 61–73). São Carlos: EduFSCar.Google Scholar
  18. Gardner, T. A., Barlow, J., Araujo, I. S., Avila-Pires, T. C. S., Bonaldo, A. B., Costa, J. E., et al. (2008). The cost-effectiveness of biodiversity surveys in tropical forests. Ecology Letters, 11, 139–150.Google Scholar
  19. Gusmão, R. P. (1990). Diagnóstico Brasil: Ocupação do território e o meio ambiente. Rio de Janeiro: Instituto Brasileiro de Geografia e Estatística.Google Scholar
  20. Hammer, O., Harper, D. A. T., & Ryan, P. D. (2001). PAST: Palaeontological Statistics Software Package for education and data analysis. Palaeontologia Electronica, 4(1), 9. Scholar
  21. Heino, J. (2009). Biodiversity of aquatic insects: Spatial gradients and environmental correlates of assemblage-level measures at large scales. Freshwater Reviews, 2, 1–29.Google Scholar
  22. Heino, J., Mykrä, H., Kotanen, J., & Muotka, T. (2007). Ecological filters and variability in stream macroinvertebrate communities: Do taxonomic and functional structure follow the same path? Ecography, 30, 217–230.Google Scholar
  23. Hewlett, R. (2000). Implications of taxonomic resolution and sample habitat for stream classification at a broad geographic scale. Journal of the North American Benthological Society, 19, 352–361.CrossRefGoogle Scholar
  24. Instituto Brasileiro de Geografia e Estatística (IBGE) (1997). Anuário estatístico do Brasil. Rio de Janeiro: Ministério do Orçamento e Planejamento.Google Scholar
  25. Johnson, R. K., Furse, M. T., Hering, D., & Sandin, L. (2007). Ecological relationships between stream communities and spatial scale: Implications for designing catchment level monitoring programmes. Freshwater Biology, 52, 939–958.CrossRefGoogle Scholar
  26. Junqueira, M. V., Amarante, M. C., Dias, C. F. S., & França, E. S. (2000). Biomonitoramento da qualidade das águas da Bacia do Alto Rio das Velhas (MG/Brasil) através de macroinvertebrados. Acta Limnologica Brasiliensia, 12, 73–87.Google Scholar
  27. Junqueira, M. V., & Campos, S. C. M. (1998). Adaptation of the “BMWP” method for water quality evaluation to Rio das Velhas watershed (Minas Gerais, Brazil). Acta Limnologica Brasiliensia, 10(2), 125–135.Google Scholar
  28. Karr, J. R. (1981). Assessment of biotic integrity using fish communities. Fisheries, 6, 21–27.CrossRefGoogle Scholar
  29. Legendre, P. (1993). Spatial autocorrelation: Trouble or new paradigm? Ecology, 74, 1659–1673.CrossRefGoogle Scholar
  30. MacNally, R. (2000). Regression and model-building in conservation biology, biogeography and ecology: The distinction between—and reconciliation of—‘predictive’ and ‘explanatory’ models. Biodiversity and Conservation, 9, 655–671.CrossRefGoogle Scholar
  31. Magurran, A. E. (1988). Ecological diversity and its measurement. New York: Chapman & Hall.Google Scholar
  32. Merritt, R. W., & Cummis, K. W. (Eds.) (1996). An introduction to the aquatic insects of North America. Kendall-Hunt: Dubuque.Google Scholar
  33. Monteiro, T. R., Oliveira, L. G., & Godoy, B. S. (2008). Biomonitoramento da qualidade da água utilizando macroinvertebrados bentônicos: Adaptação do Índice Biótico BMWP à Bacia do Rio Meia Ponte - GO. Oecologia Brasiliensis, 12(3), 553–563.CrossRefGoogle Scholar
  34. Myers, N., Mittermeier, R. A., Mittermeier, C. G., Fonseca, G. A. B., & Kent, J. (2000). Biodiversity hotspots for conservation priorities. Nature, 403, 853–858.CrossRefGoogle Scholar
  35. Mykrä, H., Heino, J., & Muotka, T. (2007). Scale-related patterns in the spatial and environmental components of stream macroinvertebrate assemblage variation. Global Ecology and Biogeography, 16, 149–159.CrossRefGoogle Scholar
  36. Nijboer, R. C., Verdonschot, P. F. M., & Van Der Werf, D. C. (2005). The use of indicator taxa as representatives of communities in bioassessment. Freshwater Biology, 50, 1427–1440.CrossRefGoogle Scholar
  37. Ometo, J. P. H. B., Martinelli, L. A., Ballester, M. V., Gessner, A., Krusche, A. V., Victoria, R. L., et al. (2000). Effects of land use on water chemistry and macroinvertebrates in two streams of the Piracicaba river basin, southeast Brazil. Freshwater Biology, 44, 327–337.CrossRefGoogle Scholar
  38. Petersen, R. C. Jr. (1992). The RCE: A riparian, channel, and environmental inventory for small strems in the agricultural landscape. Freshwater Biology, 27, 295–306.CrossRefGoogle Scholar
  39. Rabeni, C. F. (2000). Evaluating physical habitat integrity in relation to the biological potential of streams. Hydrobiologia, 422/423, 245–256.CrossRefGoogle Scholar
  40. Rangel, T. F. L. V. B., Diniz-Filho, J. A. F., & Bini, L. M. (2006). Towards an integrated computational tool for spatial analysis in macroecology and biogeography. Global Ecology and Biogeography, 15, 321–327.CrossRefGoogle Scholar
  41. Resh, V. H., & Jackson, J. K. (1993). Rapid assessment approaches to biomonitoring using benthic macroinvertebrates. In: D. M. Rosenberg, & V. H. Resh (Eds.), Freshwater biomonitoring and benthic macroinvertebrates (pp. 195–233). New York: Chapman & Hall.Google Scholar
  42. Resh, V. H. (2008). Which group is best? Attributes of different biological assemblages used in freshwater bimonitoring programs. Environmental Monitoring and Assessment, 138, 1–3.CrossRefGoogle Scholar
  43. Ribeiro, M. C., Metzger, J. P., Martensen, A. C., Ponzoni, F., & Hirota, M. M. (2009). Brazilian Atlantic forest: How much is left and how is the remaining forest distributed? Implications for conservation. Biological Conservation, 142, 1141–1153.CrossRefGoogle Scholar
  44. Roque, F. O., Lecci, L. S., Siqueira, T., & Froehlich, C. G. (2008). Using environmental and spatial filters to explain stonefly occurrences in Southeastern Brazilian streams: Implications for biomonitoring. Acta Limnologica Brasiliensia, 20, 117–130.Google Scholar
  45. Rosenberg, D. M., & Resh, V. H. (1993). Freshwater Biomonitoring and Benthic Macroinvertebrates. New York: Chapman & Hall.Google Scholar
  46. Schmidt-Kloiber, A., & Nijboer, R. C. (2004). The effect of taxonomic resolution on the assessment of ecological water quality classes. Hydrobiologia, 516, 269–283.CrossRefGoogle Scholar
  47. Silveira, M. P., Baptista, D. F., Buss, D. F., Nessimian, J. L., & Egler, M. (2005). Application of biological measures for stream integrity assessment in south-east Brazil. Environmental Monitoring and Assessment, 101, 117–128.Google Scholar
  48. SOS Mata Atlântica/INPE (1993). Atlas da evolução dos remanescentes florestais da Mata Atlântica e ecossistemas associados no período de 1985–1990. São Paulo: SOS Mata Atlântica/INPE.Google Scholar
  49. Thompson, R. M., & Townsend, C. R. (2000). Is resolution the solution? The effect of taxonomic resolution on the calculated properties of three stream food webs. Freshwater Biology, 44, 413–422.CrossRefGoogle Scholar
  50. Thorne, R. S. J., & Williams, W. P. (1997). The response of benthic macroinvertebrates to pollution in developing countries: A multimetric system of bioassessment. Freshwater Biology, 37, 671–686.CrossRefGoogle Scholar
  51. Tomanova, S., Goitia, E., & Helesic, J. (2006). Trophic levels and functional feeding groups of macroinvertebrates in neotropical streams. Hydrobiologia, 556, 251–264.CrossRefGoogle Scholar
  52. Vannote, R. L., Minshall, G. W., Cummins, K. W., Sedell, J. R., & Cushing, C. E. (1980). The river continuum concept. Canadian Journal of Fisheries and Aquatic Sciences, 37, 130–137.CrossRefGoogle Scholar
  53. Vinson, M. R., & Hawkins, C. P. (1998). Biodiversity of stream insects: Variation at local, basin, and regional spatial scales. Annual Review of Entomology, 43, 271–293.CrossRefGoogle Scholar
  54. Wantzen, K. M., & Wagner, R. (2006). Detritus processing by invertebrate shredders: A neotropical–temperate comparison. Journal of the North American Benthological Society, 25(1), 216–232.CrossRefGoogle Scholar
  55. Ward, J. V. (1989). The four-dimensional nature of lotic ecosystems. Journal of the North American Benthological Society, 8(1), 2–8.CrossRefGoogle Scholar
  56. Ward, J. V. (1992). Aquatic insect ecology. New York: Wiley.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Marcia Thais Suriano
    • 1
  • Alaide A. Fonseca-Gessner
    • 2
  • Fabio O. Roque
    • 3
  • Claudio G. Froehlich
    • 1
  1. 1.Laboratório de Entomologia Aquática. FFCLRPUniversidade de São PauloRibeirão PretoBrazil
  2. 2.Departamento de HidrobiologiaUniversidade Federal de São CarlosSão CarlosBrazil
  3. 3.Faculdade de Ciências Biológicas e AmbientaisUniversidade Federal da Grande DouradosDouradosBrazil

Personalised recommendations