Skip to main content

Advertisement

Log in

Determination of trace transition metals in environmental matrices by chelation ion chromatography

Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Trace transition metals (Fe3 + , Mn, Cu, Cd, Co, Zn, Ni) in environmental samples were analyzed by chelation ion chromatography using a mixed bed ion-exchange column with pyridine-2,6-dicarboxylic acid (PDCA) and oxalic acid as eluent and large volume direct injection (1,000 μl). The two eluents, PDCA and oxalic acid, were tested, and repeatability and detection limits were compared. The total analysis time was ~15 min. The separation with PDCA was more successful than that obtained with acid oxalic. It was observed that utilizing PDCA resulted in lower detection limits, higher repeatability, and a quantitative detection of Cd and Mn, which coelute as a single peak when using the oxalic acid. At last, the PDCA calibration graphs resulted linear (r 2 > 0.999) in the range 0.4–1,000 μg/L. The procedure was applied to the analysis of metals in soils and in water samples. The results obtained from the analysis of natural waters have demonstrated that the method is simple and efficient, therefore, can be used for the determination of metals in natural waters using a continuous and automatic monitoring system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Analytical Methods Committee (1994). Is my calibration linear? Analyst, 119, 2363.

    Article  Google Scholar 

  • APAT-IRSA-CNR (1985) Analytical methods for sludge. Issue 64, 3.

    Google Scholar 

  • APAT-IRSA-CNR (2003). Analytical methods for water.

  • Bashir, W., & Paull, B. (2002). Ionic strength, pH and temperature effects upon selectivity for transition and heavy metal ions when using chelation ion chromatography with an iminodiacetic acid bonded silica gel column and simple inorganic eluents. Journal of Chromatography A, 942, 73.

    Article  CAS  Google Scholar 

  • Basta, N. T., & Tabatabai, M. A. (1990). Ion chromatographic determination of total metals in soils. Soil Science Society of America Journal, 5, N.5.

  • Bruno, P., Caselli, M., Gennaro, G., Ielpo, P., Ladisa, T., & Placentino, C. M. (2006). Ion chromatographic determination of heavy metals in airborne particulate with preconcentration and large volume direct injection. Chromatographia, 64(9–10), 537.

    Article  CAS  Google Scholar 

  • Capocecera, P., Bruschi, R., Colonna, N., Murgia, S. M., Poletti, A., & Selvaggi, R. (1999) LIFE 99/ENV/IT/000002 Project—“Development of a new methodology for water quality control in land reclamation consortia”, Manuale Metodologico Operativo. Freiburg: LIFE-Environment.

    Google Scholar 

  • Cardellicchio, N., Cavalli, S., Ragone, P., & Riviello, J. M. (1999). New strategies for determination of transition metals by complexation ion exchange chromatography and post column reaction. Journal of Chromatography A, 847, 251.

    Article  CAS  Google Scholar 

  • Cardellicchio, N., Dell’Atti, A., Giandomenico, S., Di Leo, A., & Cavalli, S. (1998). Determination of transition metals in mineral waters by ion chromatography and spectrophotometric detection. Annali di Chimica, 88, 819.

    Google Scholar 

  • Cardellicchio, N., Ragone, P., Cavalli, S., & Riviello, J. (1997). Use of ion chromatography for the determination of transition metals in the control of sewage-treatment-plant and related waters. Journal of Chromatography, A, 770, 185.

    Article  CAS  Google Scholar 

  • Ding, X., Mou, S.-F., Liu, K., & Yan, Y. (2000a). Improved scheme of chelation ion chromatography with a mixed eluent for the simultaneous analysis of transition metals at μg/l − 1 levels. Journal of Chromatography A, 883, 127.

    Article  CAS  Google Scholar 

  • Ding, X.-J., Mou, S.-F., Liu, K.-N., Siriraks, A., & Riviello, J. (2000b). Ion chromatography of heavy and transition metals by on and post-column derivatisations. Analytica Chimica Acta, 407, 319.

    Article  CAS  Google Scholar 

  • Divjak, B., Franko, M., & Novič, M. (1998). Determination of iron in complex matrices by ion chromatography with UV-vis thermal lens and amperometric detection using post-column reagents. Journal of Chromatography A, 829, 167.

    Article  Google Scholar 

  • Dionex Corporation (2001). Installation instructions for the IonPac® CS5A analytical column. Sunnnyvale: Dionex Corporation. Document N°031188, Revision 05, 22 June 2001.

  • EURACHEM (1998). The fitness for purpose of analytical methods. A laboratory guide to method validation and related topics, 1st Internet version. Athens: EURACHEM.

    Google Scholar 

  • Jones, P., & Nesterenko, P. N. (1997). High-performance chelation ion chromatography - a new dimension in the separation and determination of trace metals. Journal of Chromatography A, 789, 413.

    Article  CAS  Google Scholar 

  • Jones, P., Williams, T., & Ebdon, L. (1990). Development of a novel multi-element detection system for trace metal determination based on chemiluminescence after separation by ion chromatography. Analytica Chimica Acta, 237, 291.

    Article  CAS  Google Scholar 

  • Lasheen, Y. F., Seliman, A. F., & Abdel-Rassoul, A. A. (2006). Chromatographic separation of certain metal ions using a bifunctional quaternary ammonium-sulfonate mixed bed ion-exchanger. Journal of Chromatography A, 1136(2), 202.

    Article  CAS  Google Scholar 

  • Long, G. L., & Winefordner, J. D. (1983). Limit of detection: A closer look at the IUPAC definition. Analytical Chemistry, 55, 713A.

    Article  Google Scholar 

  • Legislative Decree (2006) Decreto Legislativo n. 152 del 3 aprile 2006. Norme in materia ambientale. Supplemento Ordinario no. 96 della Gazzetta Ufficiale. Rome, Italy.

  • Lu, H., Mou, S., Yan, Y., Tong, S., & Riviello, J. M. (1998). On line pre-treatment and determination of Pb, Cu, Cd at the μg/l − 1 level in drinking water by chelation ion chromatography. Journal of Chromatography A, 800, 247.

    Article  CAS  Google Scholar 

  • Motellier, S., & Pitsch, H. (1996). Simultaneous analysis of some transition metals at ultra- trace level by ion exchange chromatography with on-line preconcentration. Journal of Chromatography A, 739, 119.

    Article  CAS  Google Scholar 

  • Murgia, S. M., Poletti, A., Selvaggi, R., Capocecera, P., Baldrati, E., & Bruschi, R. (2003). Sistema automatico per il monitoraggio remoto della qualità delle acque destinate al consumo umano e dei corpi idrici superfici. Atti dei Convegni Lincei, 192, 209.

    Google Scholar 

  • Nesterenko, P. N. (2002). High-performance chelation chromatography of metal ions on sorbents with grafted iminodiacetic acid. Russian Journal of Coordination Chemistry, 28(10), 726.

    Article  CAS  Google Scholar 

  • Nesterenko, P. N., & Jones, P. (1997). Single-column method of chelation ion chromatography for the analysis of trace metals in complex samples. Journal of Chromatography A, 770, 129.

    Article  CAS  Google Scholar 

  • Rossi, V., & Tubino, M. (2003). About kinetics and mechanism of the reactions of 4-(2-pyridylazo)- resorcinol, with Zn2 + , Cu2 +  and Zn2 +  + Cu2 +  equimolar mixtures, in aqueous solutions. Ecletica Química, 28(1), 55.

    CAS  Google Scholar 

  • Santoyo, E., Santoyo-Guitièrrez, S., & Verma, S. P. (2000). Trace analysis of heavy metals in groundwater samples by ion chromatography with post-column reaction and ultraviolet-visible detection. Journal of Chromatography A, 884, 229.

    Article  CAS  Google Scholar 

  • Sarzanini, C., & Bruzzoniti, M. C. (2001). Metal species determination by ion chromatography. Trends in Analytical Chemistry, 20, N.6-7.

    Google Scholar 

  • Sarzanini, C., & Cavalli, S. (1998). Cromatografia ionica - Teoria ed applicazioni. Torino: UTET.

    Google Scholar 

  • Sarzanini, C., & Mentasti, E. (1997). Determination and speciation of metals by liquid chromatography. Journal of Chromatography A, 789, 301.

    Article  CAS  Google Scholar 

  • Shaw, M. J., & Haddar, P. R. (2004). The determination of trace metal pollutants in environmental matrices using ion chromatography. Environment International, 30, 403.

    Article  CAS  Google Scholar 

  • Shaw, M. J., Nesterenko, P. N., Dicinoski, G. W., & Haddad, P. R. (2003). Selectivity behaviour of a bonded phosphonate-carboxylate polymeric ion exchanger for metal cations with varying eluent compositions. Journal of Chromatography A, 997, 3.

    Article  CAS  Google Scholar 

  • Siriraks, A., Kingston, H. M., & Riviello, J. M. (1990). Chelation ion chromatography as a method for trace elemental analysis in complex environmental and biological samples. Analytical Chemistry, 62, 1185.

    Article  CAS  Google Scholar 

  • Thompson, M. (1998). Perspective Do we really need detection limits? Analyst, 123, 405.

    Article  CAS  Google Scholar 

  • UNICHIM (2001). Chemistry laboratory guides to method validation, N. 179/1. Milan: UNICHIM.

    Google Scholar 

  • Vanatta, L. E., & Coleman, D. E. (1997). Calculation of detection limits for a single-laboratory ion chromatographic method to determine parts-per-trillion ions in ultrapure waters. Journal of Chromatography A, 770, 105.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberta Selvaggi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Murgia, S.M., Selvaggi, R. & Poletti, A. Determination of trace transition metals in environmental matrices by chelation ion chromatography. Environ Monit Assess 174, 313–326 (2011). https://doi.org/10.1007/s10661-010-1459-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-010-1459-7

Keywords

Navigation