Environmental Monitoring and Assessment

, Volume 174, Issue 1–4, pp 313–326 | Cite as

Determination of trace transition metals in environmental matrices by chelation ion chromatography

  • Sandro M. Murgia
  • Roberta Selvaggi
  • Antonio Poletti


Trace transition metals (Fe3 + , Mn, Cu, Cd, Co, Zn, Ni) in environmental samples were analyzed by chelation ion chromatography using a mixed bed ion-exchange column with pyridine-2,6-dicarboxylic acid (PDCA) and oxalic acid as eluent and large volume direct injection (1,000 μl). The two eluents, PDCA and oxalic acid, were tested, and repeatability and detection limits were compared. The total analysis time was ~15 min. The separation with PDCA was more successful than that obtained with acid oxalic. It was observed that utilizing PDCA resulted in lower detection limits, higher repeatability, and a quantitative detection of Cd and Mn, which coelute as a single peak when using the oxalic acid. At last, the PDCA calibration graphs resulted linear (r 2 > 0.999) in the range 0.4–1,000 μg/L. The procedure was applied to the analysis of metals in soils and in water samples. The results obtained from the analysis of natural waters have demonstrated that the method is simple and efficient, therefore, can be used for the determination of metals in natural waters using a continuous and automatic monitoring system.


Ionic chromatography Heavy metal PDCA Validation Natural sample monitoring Automatic monitoring system 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Analytical Methods Committee (1994). Is my calibration linear? Analyst, 119, 2363.CrossRefGoogle Scholar
  2. APAT-IRSA-CNR (1985) Analytical methods for sludge. Issue 64, 3.Google Scholar
  3. APAT-IRSA-CNR (2003). Analytical methods for water.Google Scholar
  4. Bashir, W., & Paull, B. (2002). Ionic strength, pH and temperature effects upon selectivity for transition and heavy metal ions when using chelation ion chromatography with an iminodiacetic acid bonded silica gel column and simple inorganic eluents. Journal of Chromatography A, 942, 73.CrossRefGoogle Scholar
  5. Basta, N. T., & Tabatabai, M. A. (1990). Ion chromatographic determination of total metals in soils. Soil Science Society of America Journal, 5, N.5.Google Scholar
  6. Bruno, P., Caselli, M., Gennaro, G., Ielpo, P., Ladisa, T., & Placentino, C. M. (2006). Ion chromatographic determination of heavy metals in airborne particulate with preconcentration and large volume direct injection. Chromatographia, 64(9–10), 537.CrossRefGoogle Scholar
  7. Capocecera, P., Bruschi, R., Colonna, N., Murgia, S. M., Poletti, A., & Selvaggi, R. (1999) LIFE 99/ENV/IT/000002 Project—“Development of a new methodology for water quality control in land reclamation consortia”, Manuale Metodologico Operativo. Freiburg: LIFE-Environment.Google Scholar
  8. Cardellicchio, N., Cavalli, S., Ragone, P., & Riviello, J. M. (1999). New strategies for determination of transition metals by complexation ion exchange chromatography and post column reaction. Journal of Chromatography A, 847, 251.CrossRefGoogle Scholar
  9. Cardellicchio, N., Dell’Atti, A., Giandomenico, S., Di Leo, A., & Cavalli, S. (1998). Determination of transition metals in mineral waters by ion chromatography and spectrophotometric detection. Annali di Chimica, 88, 819.Google Scholar
  10. Cardellicchio, N., Ragone, P., Cavalli, S., & Riviello, J. (1997). Use of ion chromatography for the determination of transition metals in the control of sewage-treatment-plant and related waters. Journal of Chromatography, A, 770, 185.CrossRefGoogle Scholar
  11. Ding, X., Mou, S.-F., Liu, K., & Yan, Y. (2000a). Improved scheme of chelation ion chromatography with a mixed eluent for the simultaneous analysis of transition metals at μg/l − 1 levels. Journal of Chromatography A, 883, 127.CrossRefGoogle Scholar
  12. Ding, X.-J., Mou, S.-F., Liu, K.-N., Siriraks, A., & Riviello, J. (2000b). Ion chromatography of heavy and transition metals by on and post-column derivatisations. Analytica Chimica Acta, 407, 319.CrossRefGoogle Scholar
  13. Divjak, B., Franko, M., & Novič, M. (1998). Determination of iron in complex matrices by ion chromatography with UV-vis thermal lens and amperometric detection using post-column reagents. Journal of Chromatography A, 829, 167.CrossRefGoogle Scholar
  14. Dionex Corporation (2001). Installation instructions for the IonPac® CS5A analytical column. Sunnnyvale: Dionex Corporation. Document N°031188, Revision 05, 22 June 2001.Google Scholar
  15. EURACHEM (1998). The fitness for purpose of analytical methods. A laboratory guide to method validation and related topics, 1st Internet version. Athens: EURACHEM.Google Scholar
  16. Jones, P., & Nesterenko, P. N. (1997). High-performance chelation ion chromatography - a new dimension in the separation and determination of trace metals. Journal of Chromatography A, 789, 413.CrossRefGoogle Scholar
  17. Jones, P., Williams, T., & Ebdon, L. (1990). Development of a novel multi-element detection system for trace metal determination based on chemiluminescence after separation by ion chromatography. Analytica Chimica Acta, 237, 291.CrossRefGoogle Scholar
  18. Lasheen, Y. F., Seliman, A. F., & Abdel-Rassoul, A. A. (2006). Chromatographic separation of certain metal ions using a bifunctional quaternary ammonium-sulfonate mixed bed ion-exchanger. Journal of Chromatography A, 1136(2), 202.CrossRefGoogle Scholar
  19. Long, G. L., & Winefordner, J. D. (1983). Limit of detection: A closer look at the IUPAC definition. Analytical Chemistry, 55, 713A.CrossRefGoogle Scholar
  20. Legislative Decree (2006) Decreto Legislativo n. 152 del 3 aprile 2006. Norme in materia ambientale. Supplemento Ordinario no. 96 della Gazzetta Ufficiale. Rome, Italy.Google Scholar
  21. Lu, H., Mou, S., Yan, Y., Tong, S., & Riviello, J. M. (1998). On line pre-treatment and determination of Pb, Cu, Cd at the μg/l − 1 level in drinking water by chelation ion chromatography. Journal of Chromatography A, 800, 247.CrossRefGoogle Scholar
  22. Motellier, S., & Pitsch, H. (1996). Simultaneous analysis of some transition metals at ultra- trace level by ion exchange chromatography with on-line preconcentration. Journal of Chromatography A, 739, 119.CrossRefGoogle Scholar
  23. Murgia, S. M., Poletti, A., Selvaggi, R., Capocecera, P., Baldrati, E., & Bruschi, R. (2003). Sistema automatico per il monitoraggio remoto della qualità delle acque destinate al consumo umano e dei corpi idrici superfici. Atti dei Convegni Lincei, 192, 209.Google Scholar
  24. Nesterenko, P. N. (2002). High-performance chelation chromatography of metal ions on sorbents with grafted iminodiacetic acid. Russian Journal of Coordination Chemistry, 28(10), 726.CrossRefGoogle Scholar
  25. Nesterenko, P. N., & Jones, P. (1997). Single-column method of chelation ion chromatography for the analysis of trace metals in complex samples. Journal of Chromatography A, 770, 129.CrossRefGoogle Scholar
  26. Rossi, V., & Tubino, M. (2003). About kinetics and mechanism of the reactions of 4-(2-pyridylazo)- resorcinol, with Zn2 + , Cu2 +  and Zn2 +  + Cu2 +  equimolar mixtures, in aqueous solutions. Ecletica Química, 28(1), 55.Google Scholar
  27. Santoyo, E., Santoyo-Guitièrrez, S., & Verma, S. P. (2000). Trace analysis of heavy metals in groundwater samples by ion chromatography with post-column reaction and ultraviolet-visible detection. Journal of Chromatography A, 884, 229.CrossRefGoogle Scholar
  28. Sarzanini, C., & Bruzzoniti, M. C. (2001). Metal species determination by ion chromatography. Trends in Analytical Chemistry, 20, N.6-7.Google Scholar
  29. Sarzanini, C., & Cavalli, S. (1998). Cromatografia ionica - Teoria ed applicazioni. Torino: UTET.Google Scholar
  30. Sarzanini, C., & Mentasti, E. (1997). Determination and speciation of metals by liquid chromatography. Journal of Chromatography A, 789, 301.CrossRefGoogle Scholar
  31. Shaw, M. J., & Haddar, P. R. (2004). The determination of trace metal pollutants in environmental matrices using ion chromatography. Environment International, 30, 403.CrossRefGoogle Scholar
  32. Shaw, M. J., Nesterenko, P. N., Dicinoski, G. W., & Haddad, P. R. (2003). Selectivity behaviour of a bonded phosphonate-carboxylate polymeric ion exchanger for metal cations with varying eluent compositions. Journal of Chromatography A, 997, 3.CrossRefGoogle Scholar
  33. Siriraks, A., Kingston, H. M., & Riviello, J. M. (1990). Chelation ion chromatography as a method for trace elemental analysis in complex environmental and biological samples. Analytical Chemistry, 62, 1185.CrossRefGoogle Scholar
  34. Thompson, M. (1998). Perspective Do we really need detection limits? Analyst, 123, 405.CrossRefGoogle Scholar
  35. UNICHIM (2001). Chemistry laboratory guides to method validation, N. 179/1. Milan: UNICHIM.Google Scholar
  36. Vanatta, L. E., & Coleman, D. E. (1997). Calculation of detection limits for a single-laboratory ion chromatographic method to determine parts-per-trillion ions in ultrapure waters. Journal of Chromatography A, 770, 105.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Sandro M. Murgia
    • 1
  • Roberta Selvaggi
    • 1
  • Antonio Poletti
    • 1
  1. 1.Dipartimento di ChimicaUniversità degli Studi, di PerugiaPerugiaItaly

Personalised recommendations