Environmental Monitoring and Assessment

, Volume 174, Issue 1–4, pp 271–281 | Cite as

Distribution of trace elements in the tissues of smooth hound Mustelus mustelus (Linnaeus, 1758) from the southern–eastern waters of Mediterranean Sea (Italy)

  • Maria Maddalena Storelli
  • Giuseppe Cuttone
  • Giuseppe O. Marcotrigiano


Trace element concentrations (Hg, Cd, Pb, Cr, Ni, Cu, Zn) were determined in the muscle, gonads, skin, and brain of smooth hound Mustelus mustelus in order to define the metal distribution patterns. The data indicated that metal accumulation depended on the tissues probably as a consequence of metabolic needs, physiochemical properties, and detoxification processes specific for each element. Metal concentrations were higher in gonads (Hg 0.10–0.70 μg g − 1; Cd 0.02–0.10 μg g − 1; Pb 0.08–0.39 μg g − 1; Cr 0.06–0.36 μg g − 1; Ni 1.37–3.00 μg g − 1; Zn 9.15–16.30 μg g − 1; Cu 1.95–21.62 μg g − 1) and skin (Hg 0.16–0.66 μg g − 1; Cd 0.01–0.04 μg g − 1; Pb 0.10–0.62 μg g − 1; Cr 0.15–0.68 μg g − 1; Ni 1.60–7.20 μg g − 1; Zn 9.00–16.00 μg g − 1; Cu 0.78–6.80 μg g − 1) than brain (Hg 0.04–0.34 μg g − 1; Cd 0.01–0.05 μg g − 1; Pb 0.03–0.59 μg g − 1; Cr 0.08–0.48 μg g − 1; Ni 5.59–9.69 μg g − 1; Zn 5.90–7.35 μg g − 1; Cu 0.90–4.02 μg g − 1), while muscle always exhibited the lowest levels (Hg 1.03–2.58 μg g − 1; Cd 0.01–0.06 μg g − 1; Pb 0.02–0.16 μg g − 1; Cr 0.05–0.28 μg g − 1; Ni 1.13–2.48 μg g − 1; Zn 2.64–5.06 μg g − 1; Cu 0.33–2.23 μg g − 1). Ni and Hg took exception having the highest concentrations in brain and muscle, respectively. An assessment of the risk for human due to the consumption of these marine organisms was also undertaken. Regarding Cd and Pb intakes, consumption did not guide to any concerns, while it should be extremely moderate when considering Hg intake. The comparative analyses revealed that Mediterranean sharks were exposed to higher Hg levels than biota inhabiting open ocean.


Mediterranean Sea Metals Shark Tissue distribution PTWI 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adams, D. H., & McMichael, R. H. (1999). Mercury levels in four species of sharks from the Atlantic coast of Florida. Fishery Bulletin, 97, 372–379.Google Scholar
  2. Bacci, E. (1989). Mercury in the Mediterranean. Marine Pollution Bulletin, 20, 59–63.CrossRefGoogle Scholar
  3. Biessi, B. (1994). Les requins et les raies dans les pêcheries françaises. Mémoire Maîtrise de Biologie des Organismes et des Populations. Université Pierre et Marie Curie (p. 30).Google Scholar
  4. Bowen, W. D. (1997). Role of marine mammals in aquatic ecosystems. Marine Ecology Progress Series, 158, 267–274.CrossRefGoogle Scholar
  5. Catsiki, V. A., & Strogyloudi, E. (1999). Survey of metal levels in common fish species from Greek waters. The Science of the Total Environment, 237, 387–400.CrossRefGoogle Scholar
  6. Cornish, A. S., Ng, W. C., Ho, W. C. M., Wong, H. L., Lam, J. C. W., Lam, P. K. S., et al. (2007). Trace metals and organochlorines in the bamboo shark Chiloscyllium plagiosum from the southern waters of Hong Kong, China. The Science of the Total Environment, 376, 335–345.CrossRefGoogle Scholar
  7. Cortès, E. (1999). Standardized diet compositions and trophic levels of sharks. ICES Journal of Marine Science, 56, 707–717.CrossRefGoogle Scholar
  8. EFSA European Food Safety Authority (2009). Scientific Panel on contaminants in the food chain. Cadmium in food. 30/01/2009. Belgium: EFSA; 2009/03/20. Available from: http://www.efsa.europa.eu/EFSA/efsa_locale–1178620753820_1211902396126.htm.Google Scholar
  9. Endo, T., Hisamichi, Y., Haraguchi, K., Kato, Y., Ohta, C., & Koga, N. (2008). Hg, Zn and Cu levels in the muscle and liver of tiger sharks (Galeocerdo cuvier) from the coast of Ishigaki Island, Japan: Relationship between metal concentrations and body length. Marine Pollution Bulletin, 56, 1774–1780.CrossRefGoogle Scholar
  10. FAO Food and Agriculture Organization (2008). Fisheries and aquaculture information and statistics service. FAO yearbook. Fishery and Aquaculture Statistics. 2006. Rome: FAO.Google Scholar
  11. Ferreira, A. G., Faria, V. V., Carvalho, C. E. V., Lessa, R. P. T., & Santana, F. M. (2004). Total mercury in the night shark, Carcharhinus signatus in the western equatorial Atlantic Ocean. Brazilian Archives of Biology and Technology, 47, 629–634.Google Scholar
  12. Gibbs, P. J., & Miskiewicz, A. G. (1995). Heavy metals in fish near a major primary treatment sewage plant outfall. Marine Pollution Bulletin, 30, 667–674.CrossRefGoogle Scholar
  13. Giordani, P., Helder, W., Koning, E., Miserocchi, S., Danovaro, R., & Malaguti, A. (2002). Gradients of benthic-pelagic coupling and carbon budgets in the Adriatic and Northern Ionian Sea. Journal of Marine Systems, 33–34, 365–387.CrossRefGoogle Scholar
  14. Goosen, A. J. J., & Smale, M. J. (1997). A preliminary study of age and growth of the smoothhound shark Mustelus mustelus (Triakidae). South African Journal of Marine Science, 18, 85–91.Google Scholar
  15. Harris, H. H., Pickering, I. J., & George, G. N. (2003). The chemical form of mercury in fish. Science, 301, 1203–1203.CrossRefGoogle Scholar
  16. Hobson, K. A., Piatt, J. F., & Pitocchelli, J. (1994). Using stable isotopes to determine seabird trophic relationships. Journal of Animal Ecology, 63, 786–798.CrossRefGoogle Scholar
  17. Hornung, H., Krom, M. D., Cohen, Y., & Bernhard, M. (1993). Trace metal content in deep-water sharks from the eastern Mediterranean-Sea. Marine Biology, 115, 331–338.CrossRefGoogle Scholar
  18. Jeffree, R. A., Warnau, M., Teyssié, J. L., & Markich, S. J. (2006). Comparison of the bioaccumulation from seawater and depuration of heavy metals and radionuclides in the spotted dogfish Scyliorhinus canicula (Chondrichthys) and the turbot Psetta maxima (Actinopterygii: Teleostei). The Science Total Environment, 368, 839–852.CrossRefGoogle Scholar
  19. Kalay, M., & Erdem, C. (1995). Bakırn Tilapia nilotica (L.)’ da Karaciğer, Böbrek, Solungaç, Kas, Beyin ve Kan dokularındaki birikimi ile bazı kan parametreleri üzerine etkileri. Turkish Journal of Zoology, 19, 27–33.Google Scholar
  20. Karadede, H., & Unlu, E. (2000). Concentrations of some heavy metals in water, sediment and fish species from the Ataturk Dam Lake (Euphrates), Turkey. Chemosphere, 41, 1371–1376.CrossRefGoogle Scholar
  21. Kashulin, N. A., & Reshetnikov, Y. S. (1995). Accumulation and distribution of nickel, copper, and zinc in the organs and tissues of fishes in subarctic waters. Journal of Ichthyology, 35, 154–170.Google Scholar
  22. Kovekovdova, L. T., & Simokon, M. V. (2002). Heavy metals in the tissues of commercially important fish of Amurskii Bay, Sea of Japan. Russian Journal of Marine Biology, 28, 113–119.CrossRefGoogle Scholar
  23. Kuetting, G. A. F. (1994). Mediterranean pollution. Marine Policy, 18, 233–247.CrossRefGoogle Scholar
  24. Lacerda, L. D., Paraquetti, H. H. M., Marins, R. V., Rezende, C. E., Zalmon, I. R., Gomes, M. P., et al. (2000). Mercury content in shark species from the south-eastern Brazilian coast. Brazialian. Journal of Biology, 60, 571–576.Google Scholar
  25. Lowman, E. G., Phelps, D. K., McClin, R., De Vega, V. R., Padovani, I. O., & Garcia, R. J. (1966). Interactions of the environmental and biological factors on the distribution of trace elements in the marine environment. Disposal of radioactive wastes into seas, oceans and surface waters (pp. 248–266). Vienna: International Atomic Energy Association.Google Scholar
  26. Lyle, J. M. (1984). Mercury concentrations in four carcharhinid and three hammerhead sharks from coastal waters of the Northern territory. Austrialian Journal of Marine and Freshwater Research, 35, 441–451.CrossRefGoogle Scholar
  27. Marcovecchio, J. E., Moreno, V. J., & Pérez, A. (1991). Metal accumulation in tissues of sharks from the Bahia Blanca estuary, Argentina. Marine Environmental Research, 31, 263–274.CrossRefGoogle Scholar
  28. Mársico, E. T., Machado, M. E. S., Knoff, M., & São Clemente, S. C. (2007). Total mercury in sharks along the southern Brazilian Coast. Arquivo Brasileiro de Medicina Veterinária e Zootecnia, 59, 1593–1596.CrossRefGoogle Scholar
  29. Mason, A. Z., & Jenkins, K. D. (1995). Metal detoxification in aquatic organisms. In: A. Tessier & D. T. Turner (Eds.), Metal speciation and bioavailability in aquatic systems (pp. 479–608). Toronto: Wiley.Google Scholar
  30. McMeans, B. C., Borga, K., Bechtol, W. R., Higginbotham, D., & Fisk, A. T. (2007). Essential and non-essential element concentrations in two sleeper shark species collected in arctic waters. Environmental Pollution, 148, 281–290.CrossRefGoogle Scholar
  31. Meadows, P. S. (1992). Pollution, conservation and the Mediterranean ecosystem. A perspective view. Bulletin of the Marine Biology Research Centre of Tajura, 9B, 269–298.Google Scholar
  32. Núnez-Nogueira, G. (2005). Concentration of essential and non-essential metals in two sharks species commonly caught in Mexican (Gulf of Mexico) coastline. In: A. V. Botello, J. Rendón-von Osten, G. Gold-Bouchot, & C. Agraz-Hernandéz (Eds.), Golfo de México Contaminación e impacto ambiental: Diagnóstico y tendencias (2da ed., pp. 451–474). Tlacopac, Mexico: Univ. Autón. de Campeche, Univ. Nal. Autón. de México, Instituto Nacional de Ecologia.Google Scholar
  33. Official Journal of the European Communities (2006). Commission regulation (EC) No 1881/2006 of 19 December 2006 setting maximum levels for certain contaminants in foodstuffs. L 364/5.Google Scholar
  34. Official Journal of the European Communities (2008). Commission regulation (EC) No 629/2008 of 2 July 2008 amending Regulation (EC) No 1881/2006 setting maximum levels for certain contaminants in foodstuffs. L 173/6.Google Scholar
  35. Pane, E. F., Richards, J. G., & Wood, C. M. (2003). Acute waterborne nickel toxicity in the rainbow trout (Oncorhynchus mykiss) occurs by a respiratory rather than ionoregulatory mechanism. Aquatic Toxicology, 63, 65–82.CrossRefGoogle Scholar
  36. Passow, U. (2002). Transparent exopolymer particles (TEP) in aquatic environments. Progress in Oceanography, 55, 287–333.CrossRefGoogle Scholar
  37. Pauly, D., Trites, A., Capuli, E., & Christensen, V. (1998). Diet composition and trophic levels of marine mammals. ICES Journal of Marine Science, 55, 467–481.CrossRefGoogle Scholar
  38. Pethybridge, H., Cossa, D., & Butler, E. C. V. (2010). Mercury in 16 demersal sharks from southeast Australia: Biotic and abiotic sources of variation and consumer health implications. Marine Environmental Research, 69, 18–26. doi: 10.1016/j.marenvres.2009.07.006.CrossRefGoogle Scholar
  39. Pinho, A. P., Guimarães, J. R. D., Martins, A. S., Costa, P. A. S., Olavo, G., & Valentin, J. (2002). Total mercury in muscle tissue of five shark species from brazilian offshore waters: Effects of feeding habit, sex, and length. Environmental Research Section A, 89, 250–258.CrossRefGoogle Scholar
  40. Powell, J. H., & Powell, R. E. (2001). Trace elements in fish overlying subaqueous tailings in the tropical west pacific. Water Air and Soil Pollution, 125, 81–104.CrossRefGoogle Scholar
  41. Serrano, R., Fernandez, M. A., Hernandez, L. M., Hernandez, M., Pascual, P., Rabanal, R. M., et al. (1997). Coplanar polychlorinated biphenyl congeners in shark livers from the north-western African Atlantic Ocean. Bulletin of Environmental Contamination and Toxicology, 58, 150–157.CrossRefGoogle Scholar
  42. Serrano, R., Fernandez, M., Rabanal, R., Hernandez, M., & Gonzalez, M. J. (2000). Congener-specific determination of polychlorinated biphenyls in shark and grouper livers from the Northwest African Atlantic Ocean. Archives of Environmental Contamination and Toxicology, 38, 217–224.CrossRefGoogle Scholar
  43. Storelli, M. M. (2008). Potential human health risks from metals (Hg, Cd and Pb) and polychlorinated biphenyls (PCBs) via seafood consumption: Estimation of target hazard quotients (THQs) and toxic equivalents (TEQs). Food Chemistry and Toxicology, 46, 2782–2788.CrossRefGoogle Scholar
  44. Storelli, M. M., & Marcotrigiano, G. O. (2002). Mercury speciation and relationship between mercury and selenium in liver of Galeus melastomus from the Mediterranean Sea. Bulletin of Environmental Contamination and Toxicology, 69, 516–522.CrossRefGoogle Scholar
  45. Storelli, M. M., & Marcotrigiano, G. O. (2004). Interspecific variation in total arsenic body concentrations in elasmobranch fish from the Mediterranean Sea. Marine Pollution Bulletin, 48, 1145–1167.CrossRefGoogle Scholar
  46. Storelli, M. M., Giacominelli-Stuffler, R., & Marcotrigiano, G. O. (2001). Total mercury and methylmercury in tuna fish and sharks from the south Adriatic Sea. Italian Journal of Food Science, 1, 101–106.Google Scholar
  47. Storelli, M. M., Giacominelli-Stuffler, R., & Marcotrigiano, G. (2002). Mercury accumulation and speciation in muscle tissue of different species of sharks from Mediterranean Sea, Italy. Bulletin of Environmental Contamination and Toxicology, 68, 201–210.CrossRefGoogle Scholar
  48. Storelli, M. M., Ceci, E., Storelli, A., & Marcotrigiano, G. O. (2003). Polychlorinated biphenyl, heavy metal and methylmercury residues in hammerhead sharks: Contaminant status and assessment. Marine Pollution Bulletin, 46, 1035–1048.CrossRefGoogle Scholar
  49. Storelli, M. M., Busco, V. P., & Marcotrigiano, G. O. (2005). Mercury and arsenic speciation in the muscle tissue of Scyliorhinus canicula from the Mediterranean Sea. Bulletin of Environmental Contamination and Toxicology, 75, 81–88.CrossRefGoogle Scholar
  50. Tallkvist, J., Henriksson, J., D’Argy, R., & Tjalve, H. (1998). Transport and subcellular distribution of nickel in the olfactory system of pikes and rats. Toxicological Sciences, 43, 196–203.CrossRefGoogle Scholar
  51. TKB Research Institute for Agricultural Economy (2002). Fisheries laws and regulations. Ministry of agriculture and rural affairs, conservation and control general management. Ankara: TKB Research Institute for Agricultural Economy.Google Scholar
  52. Turan, C., Dural, M., Oksuz, A., & Öztürk, B. (2009). Levels of heavy metals in some commercial fish species captured from the Black Sea and Mediterranean coast of Turkey. Bulletin of Environmental Contamination and Toxicology, 82, 601–604.CrossRefGoogle Scholar
  53. Turoczy, N. J., Laurenson, L. J. B., Allinson, G., Nishikawa, M., Lambert, D. F., Smith, C., et al. (2000). Observations on metal concentrations in three species of shark (Deania calcea, Centroscymnus crepidater, and Centroscymnus owstoni) from southeastern Australian waters. Journal of Agricoltural and Food Chemistry, 48, 4357–4364.CrossRefGoogle Scholar
  54. Unlu, E., Akba, O., Sevim, S., & Gumgum, B. (1996). Heavy metal levels in mullet, Liza abu (Heckel, 1843) (Mugilidae) from the Tigris River, Turkey. Fresenius Environmental Bulletin, 5, 107–112.Google Scholar
  55. Usero, J., Izquierdo, C., Morillo, J., & Gracia, I. (2003). Heavy metals in fish (Solea vulgaris, Anguilla Anguilla and Liza aurata) from salt marshes on the Southern Atlantic coast of Spain. Environment International, 29, 949–956.CrossRefGoogle Scholar
  56. Vas, P. (1991). Trace metal levels in sharks from British and Atlantic Waters. Marine Pollution Bulletin, 22, 67–72.CrossRefGoogle Scholar
  57. Vas, P., & Gordon, J. D. M. (1993). Trace metals in deep-sea sharks from the Rockall Trough. Marine Pollution Bulletin, 26, 400–402.CrossRefGoogle Scholar
  58. Vlieg, P., Murray, T., & Body, D. R. (1993). Nutritional data on six oceanic pelagic fish species from New Zealand waters. Journal of Food Composition and Analysis, 6, 45–54.CrossRefGoogle Scholar
  59. WHO World Health Organization (2003). Summary and conclusions. Presented at the 61st Meeting of the Joint FAO/WHO Expert Committee on Food Additives, Rome, 10–19 June 2003.Google Scholar
  60. Windom, H. R., Stickney, R., White, D., & Taylor, F. (1973). Arsenic, cadmium, copper, mercury and zinc in some species of North Atlantic finfish. Journal of the Fisheries Research Board of Canada, 30, 275–279.Google Scholar
  61. Zavatarelli, M., Raicich, F., Bregant, D., Russo, A., & Artegiani, A. (1998). Climatological biogeochemical characteristics of the Adriatic Sea. Journal of Marine Systems, 18, 227–263.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Maria Maddalena Storelli
    • 1
  • Giuseppe Cuttone
    • 1
  • Giuseppe O. Marcotrigiano
    • 1
  1. 1.Pharmacological-Biological Department, Chemistry and Biochemistry Section, Veterinary Medicine FacultyUniversity of BariValenzano (Ba)Italy

Personalised recommendations