Environmental Monitoring and Assessment

, Volume 174, Issue 1–4, pp 187–197 | Cite as

Nanominerals and nanoparticles in feed coal and bottom ash: implications for human health effects

  • Luis F. O. Silva
  • Kátia M. da Boit


Environmental and human health risk assessments of nanoparticle effects from coal and bottom ash require thorough characterisation of nanoparticles and their aggregates. In this manuscript, we expand the study of human exposure to nanosized particles from coal combustion sources (typically <100 nm in size), characterising the complex micromineralogy of these airborne combustion-derived nanomaterials. Our study focuses on bottom ash generated in the Santa Catarina power station (Brazil) which uses coal enriched in ashes, many potential elements (e.g. Cr and Ni) and pyrite. Transmission electron microscope data reveal nanoscale C deposits juxtaposed with and overgrown by slightly larger aluminosilicate (Al–Si) glassy spheres, oxides, silicates, carbonated, phosphates and sulphates. Iron oxides (mainly hematite and magnetite) are the main bottom ash products of the oxidation of pyrite, sometimes via intermediate pyrrhotite formation. The presence of iron oxide nanocrystals mixed with silicate glass particles emphasises the complexity of coal and bottom ash micromineralogy. Given the potentially bioreactive nature of such transition metal-bearing materials, there is likely to be an increased health risk associated with their inhalation.


Coal Bottom ash Nanominerals Human exposure 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. An, D., Li, D., Liang, Y., & Jing, Z. (2007). Unventilated indoor coal-fired stoves in Guizhou province, China: Reduction of arsenic exposure through behavior changes resulting from mitigation and health education in populations with arsenicosis. Environmental Health Perspectives, 115, 659–662.CrossRefGoogle Scholar
  2. ANEEL (2006). Agência Nacional de Energia Elétrica. Accessed 25 June.
  3. ASTM (1991). Annual Book of ASTM Standards. Sec 05.05. Standard test method for ash in the analysis sample of coal and coke from coal, Philadelphia, PA.Google Scholar
  4. Balaan, M. R., & Banks, D. E. (1998). Chapter 29: Silicosis. In W. N. Rom (Ed.), Environmental and occupational medicine (3rd ed.). New York: Lippincott-Raven.Google Scholar
  5. Belluso, E., Bellis, D., Fornero, E., Capella, S., Ferraris, G., & Coverlizza, S. (2006). Assessment of inorganic fibre burden in biological samples by scanning electron microscopy–energy dispersive spectroscopy. Microchimica Acta, 155, 95.CrossRefGoogle Scholar
  6. Bhargava, S., Garg, A., & Subasinghe, N. (2009). In situ high-temperature phase transformation studies on pyrite. Fuel, 88, 988–993.CrossRefGoogle Scholar
  7. Binotto, R. B., Teixeira, E. C., Sanchez, J. C. D., Migliavacca, D., & Nani, A. S. (2000). Environmental assessment: contamination of phreatic aquifer in areas impacted by waste from coal processing activities. Fuel, 79, 1547–1560.CrossRefGoogle Scholar
  8. Borm, P., Robbins, D., & Haubold, S. (2006). The potential risks of nanomaterials: A review carried out for ECETOC. Particle and Fibre Toxicology, 3, 11. doi: 10.1186/1743-8977-3-11.CrossRefGoogle Scholar
  9. Brown, D., Wilson, M., MacNee, W., Stone, V., & Donaldson, K. (2001). Size-dependent proinflammatory effects of ultrafine polystyrene particles: A role for surface area and oxidative stress in the enhanced activity of ultrafines. Toxicology and Applied Pharmacology, 175, 191–199.CrossRefGoogle Scholar
  10. Brown, R. A., Leahy, M. C., & Pyrih, R. Z. (1998). In situ remediation of metals comes of age. Remediation, 8, 81–96.CrossRefGoogle Scholar
  11. Bullard-Dillard, R., Creek, K., Scrivens, W., & Tour, J. (1996). Tissue sites of uptake of C-14-labeled C-60. Bioorganic Chemistry, 24, 376–385.CrossRefGoogle Scholar
  12. Bunt, J., & Waanders, F. (2009). Pipe reactor gasification studies of a South African bituminous coal blend. Part 1—carbon and volatile matter behaviour as function of feed coal particle size reduction. Fuel, 88, 585–594.CrossRefGoogle Scholar
  13. Bunt, J., Joubert, J., & Waanders, F. (2008). Coal char temperature profile estimation using optical reflectance for a commercial-scale Sasol–Lurgi FBDB gasifier. Fuel, 87, 2849–2855.CrossRefGoogle Scholar
  14. Chau, C., Wu, S., & Yen, G. (2007). The development of regulations for food nanotechnology. Trends in Food Science & Technology, 18, 269–280.CrossRefGoogle Scholar
  15. Chen, Y., Shah, N., & Huggins, F. (2005). Characterization of ultrafine coal fly ash particles by energy-filtered TEM. Journal of Microscopy, 217, 225–234.CrossRefGoogle Scholar
  16. Chen, Y., Shah, N., Huggins, F. E., & Huffman, G. P. (2004). Investigation of the microcharacteristics of PM2.5 in residual oil fly ash by analytical transmission electron microscopy. Environmental Science and Technology, 38, 6553–6560.CrossRefGoogle Scholar
  17. Cohn, C., Borda, M., & Schoonen, M. (2004). RNA decomposition by pyrite-induced radicals and possible role of lipids during the emergence of life. Earth and Planetary Science Letters, 225, 271–278.CrossRefGoogle Scholar
  18. Cohn, C., Mueller, S., Wimmer, E., Leifer, N., Greenbaum, S., Strongin, D. R., et al. (2006). Pyrite-induced hydroxyl radical formation and its effect on nucleic acids. Geochemical Transactions, 7, 3.CrossRefGoogle Scholar
  19. Cohn, C., Pak, A., Schoonen, M., & Strongin, D. (2005). Quantifying hydrogen peroxide in iron-containing solutions using leuco crystal violet. Geochemical Transactions, 6, 47–52.CrossRefGoogle Scholar
  20. Cooke, D. J., Redfern, S. E., & Parker, S. C. (2004). Atomistic simulation of the structure and segregation to the (0001) and surfaces of Fe2O3. Physics and Chemistry of Minerals, 31, 507–517.CrossRefGoogle Scholar
  21. Cornell, R. M., & Schwertmann, U. (2003). The iron oxides: Structure, properties, reactions, occurrence and uses, second, completely revised and extended ed. Weinheim: Wiley-VCH.Google Scholar
  22. Depoi, F. S., Pozebon, D., & Kalkreuth, W. D. (2008). Chemical characterization of feed coals and combustion-by-products from Brazilian power plants. International Journal of Coal Geology, 76, 227–236.CrossRefGoogle Scholar
  23. Effros, R. (2009). The canary in the coal mine: Telomeres and human healthspan. Journals of Gerontology, Series A: Biological Sciences and Medical Sciences, 64, 511–515.CrossRefGoogle Scholar
  24. Feng, J. Y., Hu, X. J., & Yue, P. L. (2004). Discoloration and mineralization of orange II using different heterogeneous catalysts containing Fe: A comparative study. Environmental Science & Technology, 38, 5773–5778.CrossRefGoogle Scholar
  25. Feng, X. S., Dean, C., Zhong, L., Paras, M. S., Santora, B., Sutorik, A. C., et al. (2006). Converting ceria polyhedral nanoparticles into single-crystal nanospheres. Science, 312, 1504–1508.CrossRefGoogle Scholar
  26. Fowler, T. A., Holmes, P. R., & Crundwell, F. K. (1999). Mechanism of pyrite dissolution in the presence of Thiobacillus ferrooxidans. Applied and Environmental Microbiology, 65, 2987–2993.Google Scholar
  27. Frampton, M., Stewart, J., Oberdorster, G., Morrow, P., Chalupa, D., Pietropaoli, A., et al. (2006). Inhalation of ultrafine particles alters blood leukocyte expression of adhesion molecules in humans. Environmental Health Perspectives, 114, 51–58.CrossRefGoogle Scholar
  28. Geiser, M., Rothen-Rutishauser, B., Kapp, N., Schurch, S., Kreyling, W., Schulz, H., et al. (2005). Ultrafine particles cross cellular membranes by nonphagocytic mechanisms in lungs and in cultured cells. Environmental Health Perspectives, 113, 1555–1560.CrossRefGoogle Scholar
  29. Giere, R., Blackford, M., & Smith, K. (2006). TEM study of PM2.5 emitted from coal and tire combustion in a thermal power station. Environmental Science & Technology, 40, 6235–6240.CrossRefGoogle Scholar
  30. Gilbert, B., & Banfield, J. F. (2005). Molecular-scale processes involving nanoparticulate minerals in biogeochemical systems. Reviews in Mineralogy and Geochemistry, 59, 109–155.CrossRefGoogle Scholar
  31. Gilmour, M., O’Connor, S., Dick, C., Miller, C., & Linak, W. (2004). Differential pulmonary inflammation and in vitro cytotoxicity of size-fractionated fly ash particles from pulverized coal combustion. Journal of the Air & Waste Management Association, 54, 286–295.Google Scholar
  32. Hardman, R. (2006). A toxicologic review of quantum dots: Toxicity depends on physicochemical and environmental factors. Environmental Health Perspectives, 114, 165–172.CrossRefGoogle Scholar
  33. Hochella, M., Lower, S., Maurice, P., Penn, L., Sahai, N., Sparks, D., et al. (2008). Nanominerals, mineral nanoparticles, and earth systems. Science, 319, 1631–1635.CrossRefGoogle Scholar
  34. Hower, J., Graham, U., Dozier, A., Tseng, M., & Khatri, R. (2008). Association of the sites of heavy metals with nanoscale carbon in a Kentucky electrostatic precipitator fly ash. Environmental Science & Technology, 42, 8471–8477.CrossRefGoogle Scholar
  35. ICDD, International Center for Diffraction Data (2009). Accessed 20 July 2009.
  36. Jorgensen, F., & Moyle, F. (1982). Phases formed during the thermal analysis of pyrite in air. Journal of Thermal Analysis, 25, 473–485.CrossRefGoogle Scholar
  37. Kelly, F. (2003). Oxidative stress: Its role in air pollution and adverse health effects. Occupational and Environmental Medicine, 60, 612–616.CrossRefGoogle Scholar
  38. Kerisit, S., & Parker, S. C. (2004). Free energy of adsorption of water and metal ions on the {10.hivin.14} calcite surface. Journal of the American Chemical Society, 126, 10152–10161.CrossRefGoogle Scholar
  39. Koch, A., Reynolds, F., Merkle, H., Weissleder, R., & Josephson, L. (2005). Transport of surface-modified nanoparticles through cell monolayers. ChemBioChem, 6, 337–345.CrossRefGoogle Scholar
  40. Levandowski, J., & Kalkreuth, W. (2009). Chemical and petrographical characterization of feed coal, fly ash and bottom ash from the Figueira Power Plant, Paraná, Brazil. International Journal of Coal Geology, 77, 269–281CrossRefGoogle Scholar
  41. Liang-Che, C., Jo-Chi, T., & Chung-Ching, H. (2006). Gene polymorphisms of fibrinolytic enzymes in coal workers pneumoconiosis. Archives of Environmental & Occupational Health, 61, 61–66.CrossRefGoogle Scholar
  42. Madden, A. S., Hochella, M. F., & Luxton, T. P. (2006). Insights for size-dependent reactivity of hematite nanomineral surfaces through Cu2 +  sorption. Geochimica et Cosmochimica Acta, 70, 4095–4104.CrossRefGoogle Scholar
  43. Mohan, D., Pittman, C. U. Jr. (2007). Arsenic removal from water/wastewater using adsorbents—a critical review. Journal of Hazardous Materials, 142, 1–53.CrossRefGoogle Scholar
  44. Oberdoerster, G., Oberdoerster, E., & Oberdoerster, J. (2005). Nanotoxicology: An emerging discipline evolving studies of ultrafine particles. Environmental Health Perspectives, 113, 823–839.CrossRefGoogle Scholar
  45. Peretyazhko, T., Zachara, J. M., Boily, J. F., Xia, Y., Gassman, P. L., Arey, B. W., et al. (2009). Mineralogical transformations controlling acid mine drainage chemistry. Chemical Geology, 262, 169–178.CrossRefGoogle Scholar
  46. Pritchard, R., Ghio, A., Lehmann, J., Winsett, D., Tepper, J., Park, P., et al. (1996). Oxidant generation and lung injury after particulate air pollutant exposure increase with concentrations of associated metals. Inhalation Toxicology, 8, 457–477.CrossRefGoogle Scholar
  47. Rastogi, N., Oakes, M., Schauer, J., Shafer, M., Majestic, B., & Weber, R. (2009). New technique for online measurement of water-soluble Fe(II) in atmospheric aerosols. Environmental Science & Technology, 43, 2425–2430.CrossRefGoogle Scholar
  48. Rohde, G. M., & Silva, N. I. W. (2006). Cinzas de Carvão Fóssil no Brasil Aspectos Técnicos e Ambientais (Vol. 1). Porto Alegre: CIENTEC.Google Scholar
  49. Schorr, J., & Everhart, J. (1969). Thermal behavior of pyrite and its relation to carbon and sulfur oxidation in clays. Journal of the American Ceramic Society, 52, 351–354.CrossRefGoogle Scholar
  50. See, S., Wang, Y., & Balasubramanian, R. (2007). Contrasting reactive oxygen species and transition metal concentrations in combustion aerosols. Environmental Research, 103, 317–324.CrossRefGoogle Scholar
  51. Sherman, D. M. (2005). Electronic structures of iron(III) and manganese(IV) (hydr)oxide minerals: Thermodynamics of photochemical reductive dissolution in aquatic environments. Geochimica et Cosmochimica Acta, 69, 3249–3255.CrossRefGoogle Scholar
  52. Silva, L. F. O., Macias, F., Oliveira, M. L. S., da Boit, K. M., & Waanders, F. (2010). Coal cleaning residues and Fe-minerals implications. Environmental Monitoring and Assessment. doi: 10.1007/s10661-010-1340-8.Google Scholar
  53. Silva, L. F. O., Moreno, T., & Querol, X. (2009a). An introductory TEM study of Fe-nanominerals within coal fly ash. Science of the Total Environment, 407, 4972–4974.CrossRefGoogle Scholar
  54. Silva, L. F. O., Oliveira, M. L. S., da Boit, K. M., & Finkelman, R. B. (2009b). Characterization of Santa Catarina (Brazil) coal with respect to Human Health and Environmental Concerns. Environmental Geochemistry and Health, 31, 475–485.CrossRefGoogle Scholar
  55. Smedley, P. L., & Kinniburgh, D. G. (2002). A review of the source, behaviour and distribution of arsenic in natural waters. Applied Geochemistry, 17, 517–68.CrossRefGoogle Scholar
  56. Smith, C., Shaw, B., & Handy, R. (2007). Toxicity of single walled carbon nanotubes to rainbow trout (Oncorhynchus mykiss): respiratory toxicity, organ pathologies, and other physiological effects. Aquatic Toxicology, 82, 94–109.CrossRefGoogle Scholar
  57. Suzuki, Y., Kelly, S., Kemner, K., & Banfield, J. (2002). Radionuclide contamination—nanometre-size products of uranium bioreduction. Nature, 419, 134–134.CrossRefGoogle Scholar
  58. Tatár, E., Csiky, G., Mihucz, V., & Záray, G. (2005). Investigation of adverse health effects of residual oil fly ash emitted from a heavy-oil-fuelled Hungarian power plant. Microchemical Journal, 79, 263–269.CrossRefGoogle Scholar
  59. Tian, L. (2005). Coal combustion emissions and lung cancer in Xuan Wei, China. PhD thesis, University of California: Berkeley, CA, 2005.Google Scholar
  60. Tiede, K., Hassellöv, M., Breitbarthc, E., Chaudhryb, Q., & Boxall, A. B. A. (2009). Considerations for environmental fate and ecotoxicity testing to support environmental risk assessments for engineered nanoparticles. Journal of Chromatography A, 1216, 503–509.CrossRefGoogle Scholar
  61. Villa, R. D., Trovo, A. G., & Pupo, N. R. F. (2008). Environmental implications of soil remediation using the Fenton process. Chemosphere, 71, 43–50.CrossRefGoogle Scholar
  62. Warheit, D. B., Webb, T. R., & Reed, K. L. (2007). Pulmonary toxicity screening studies in male rats with M5 respirable fibers and particulates. Inhalation Toxicology, 19, 951.CrossRefGoogle Scholar
  63. Warheit, D. B., Reed, K. L., Sayes, C. M. (2009). A role for nanoparticle surface reactivity in facilitating pulmonary toxicity and development of a base set of hazard assays as a component of nanoparticle risk management. Inhalation Toxicology, 21, 61.CrossRefGoogle Scholar
  64. Waychunas, G., Kim, C., & Banfield, J. (2005a). Nanoparticulate iron oxide minerals in soils and sediments: Unique properties and contaminant scavenging mechanisms. Journal of Nanoparticle Research, 7, 409–433.CrossRefGoogle Scholar
  65. Waychunas, G., Trainor, T., Eng, P., Catalano, J., Brown, G., Davis, J., et al. (2005b). Surface complexation studied via combined grazing-incidence EXAFS and surface diffraction: Arsenate and hematite (0 0 0 1) and (1 0–1 2). Analytical and Bioanalytical Chemistry, 383, 12–27.CrossRefGoogle Scholar
  66. Xia, T., Lovochick, M., & Brant, J. (2006). Comparisons of the ability of ambient and manufactured nanoparticles to induce cellular toxicity according to an oxidative stress paradigm. Nano Letters, 6, 1794–1897.CrossRefGoogle Scholar
  67. Zhang, H., & Banfield, J. F. (2004). Aggregation, coarsening, and phase transformation in ZnS nanoparticles studied by molecular dynamics simulations. Nano Letters, 4, 713–718.CrossRefGoogle Scholar
  68. Zhang, H., Rustad, J. R., & Banfield, J. F. (2007). Interaction between water molecules and zinc sulfide nanoparticles studied by temperature-programmed desorption and molecular dynamics simulations. Journal of Physical Chemistry A, 111, 5008–5014.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Catarinense Institut of Environmental Research and Human DevelopmentIPADHCSanta CatarinaBrazil

Personalised recommendations