Advertisement

Environmental Monitoring and Assessment

, Volume 173, Issue 1–4, pp 685–699 | Cite as

Monitoring seasonal bat activity on a coastal barrier island in Maryland, USA

  • Joshua B. Johnson
  • J. Edward Gates
  • Nicolas P. Zegre
Article

Abstract

Research on effects of wind turbines on bats has increased dramatically in recent years because of significant numbers of bats killed by rotating wind turbine blades. Whereas most research has focused on the Midwest and inland portions of eastern North America, bat activity and migration on the Atlantic Coast has largely been unexamined. We used three long-term acoustic monitoring stations to determine seasonal bat activity patterns on the Assateague Island National Seashore, a barrier island off the coast of Maryland, from 2005 to 2006. We recorded five species, including eastern red bats (Lasiurus borealis), big brown bats (Eptesicus fuscus), hoary bats (Lasiurus cinereus), tri-colored bats (Perimyotis subflavus), and silver-haired bats (Lasionycteris noctivagans). Seasonal bat activity (number of bat passes recorded) followed a cosine function and gradually increased beginning in April, peaked in August, and declined gradually until cessation in December. Based on autoregressive models, inter-night bat activity was autocorrelated for lags of seven nights or fewer but varied among acoustic monitoring stations. Higher nightly temperatures and lower wind speeds positively affected bat activity. When autoregressive model predictions were fitted to the observed nightly bat pass totals, model residuals >2 standard deviations from the mean existed only during migration periods, indicating that periodic increases in bat activity could not be accounted for by seasonal trends and weather variables alone. Rather, the additional bat passes were attributable to migrating bats. We conclude that bats, specifically eastern red, hoary, and silver-haired bats, use this barrier island during migration and that this phenomenon may have implications for the development of near and offshore wind energy.

Keywords

Acoustic monitoring Anabat Bats Maryland Migration Wind energy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. American Wind Energy Association (AWEA) (2009). Another record year for new wind installations. Washington, D. C.: American Wind Energy Association. http://www.awea.org/pubs/factsheets/Market_Update_Factsheet.pdf. Accessed 14 October 2009.
  2. Arnett, E. B. (Ed.) (2005). Relationships between bats and wind turbines in Pennsylvania and West Virginia: An assessment of bat fatality search protocols, patterns of fatality, and behavioral interactions with wind turbines. Austin: Bat Conservation International, Bats and Wind Energy Cooperative.Google Scholar
  3. Arnett, E. B., Brown, W. K., Erickson, W. P., Fiedler, J. K., Hamilton, B. L., Henry, T. H., et al. (2008). Patterns of bat fatalities at wind energy facilities in North America. Journal of Wildlife Management, 72(1), 61–78.CrossRefGoogle Scholar
  4. Baerwald, E. F., Edworthy, J., Holder, M., & Barclay, R. M. R. (2009). A large-scale mitigation experiment to reduce bat fatalities at wind energy facilities. Journal of Wildlife Management, 73(7), 1077–1081.CrossRefGoogle Scholar
  5. Bluewater Wind (2008). Delaware overview. Newark: BluewaterWind, a Babcock & Brown Company. http://www.bluewaterwind.com/de_overview.htm. Accessed 14 October 2009.
  6. Broders, H. G. (2003). Another quantitative measure of bat species activity and sampling intensity considerations for the design of ultrasonic monitoring studies. Acta Chiropterologica, 5(2), 235–241.Google Scholar
  7. Carter, T. D. (1950). On the migration of the red bat, Lasiurus borealis borealis. Journal of Mammalogy, 31(3), 349–350.Google Scholar
  8. Ciechanowski, M., Zając, T., Biłas, A., & Dunajski, R. (2007). Spatiotemporal variation in activity of bat species differing in hunting tactics: Effects of weather, moonlight, food abundance, and structural clutter. Canadian Journal of Zoology, 85(12), 1249–1263.CrossRefGoogle Scholar
  9. Cooley, R. (1954). Second record of the hoary bat in Florida. Journal of Mammalogy, 35(1), 116–117.CrossRefGoogle Scholar
  10. Corben, C. (2001). Analook. Version 4.8p. Computer software. IBM.Google Scholar
  11. Cryan, P. M. (2003). Seasonal distribution of migratory tree bats (Lasiurus and Lasionycteris) in North America. Journal of Mammalogy, 84(2), 579–593.CrossRefGoogle Scholar
  12. Cryan, P. M. (2008). Mating behavior as a possible cause of bat fatalities at wind turbines. Journal of Wildlife Management, 72(3), 845–849.CrossRefGoogle Scholar
  13. Cryan, P. M., & Brown, A. C. (2007). Migration of bats past a remote island offers clues toward the problem of bat fatalities at wind turbines. Biological Conservation, 139(1), 1–11.CrossRefGoogle Scholar
  14. Dunbar, M. B., & Tomasi, T. E. (2006). Arousal patterns, metabolic rate, and an energy budget of eastern red bats (Lasiurus borealis) in winter. Journal of Mammalogy, 87(6), 1096–1102.CrossRefGoogle Scholar
  15. Erickson, J. L., & West, S. D. (2002). The influence of regional climate and nightly weather conditions on activity patterns of insectivorous bats. Acta Chiropterologica, 4(1), 17–24.Google Scholar
  16. Fenton, M. B., & Bell, G. P. (1981). Recognition of species of insectivorous bats by their echolocation calls. Journal of Mammalogy, 62(2), 233–243.CrossRefGoogle Scholar
  17. Fiedler, J. K. (2004). Assessment of bat mortality and activity at Buffalo Mountain Windfarm, eastern Tennessee. MSc thesis, University of Tennessee, Knoxville, TN, USA.Google Scholar
  18. Fleming, T. H., & Eby, P. (2003). Ecology of bat migration. In T. H. Kunz & M. B. Fenton (Eds.), Bat ecology. Chicago: University of Chicago Press.Google Scholar
  19. Furlonger, C. L., Dewar, H. J., & Fenton, M. B. (1987). Habitat use by foraging insectivorous bats. Canadian Journal of Zoology, 65(2), 284–288.CrossRefGoogle Scholar
  20. Global Wind Energy Council [GWEC] (2008). Global wind 2007 report. Brussels: Global Wind Energy Council. http://www.gwec.net/fileadmin/documents/test2/gwec-08-update_FINAL.pdf. Accessed 3 June 2008.
  21. Grewal, R., Cote, J. A., & Baumgartner, H. (2004). Multicollinearity and measurement error in structural equation models: Implications for theory testing. Marketing Science, 23(4), 519–529.CrossRefGoogle Scholar
  22. Hayes, J. P. (1997). Temporal variation in activity of bats and the design of echolocation-monitoring studies. Journal of Mammalogy, 78(2), 514–524.CrossRefGoogle Scholar
  23. Higgins, E. A. T., Rappleye, R. D., & Brown, R. G. (1971). The flora and ecology of Assateague Island. College Park: University of Maryland, Agricultural Experimental Station.Google Scholar
  24. Horn, J. W., Arnett, E. B., & Kunz, T. H. (2008). Behavioral responses of bats to operating wind turbines. Journal of Wildlife Management, 72(1), 123–132.CrossRefGoogle Scholar
  25. Humphrey, S. R. (1975). Nursery roosts and community diversity of Nearctic bats. Journal of Mammalogy, 56(2), 321–346.CrossRefGoogle Scholar
  26. Jain, A., Kerlinger, P., Curry, R., & Slobodnik, L. (2007). Annual report for the Maple Ridge wind power project post-construction bird and bat fatality study—2006. Cape May Point, NJ: PPM Energy and Horizon Energy, Curry and Kerlinger LLC.Google Scholar
  27. Johnson, J. B., & Gates, J. E. (2008). Bats of Assateague Island National Seashore, Maryland. American Midland Naturalist, 160(1), 160–170.CrossRefGoogle Scholar
  28. Johnson, J. B., Menzel, M. A., Edwards, J. W., & Ford, W. M. (2002). A comparison of 2 acoustical bat survey techniques. Wildlife Society Bulletin, 30(4), 931–936.Google Scholar
  29. Johnson, J. B., Gates, J. E., & Ford, W. M. (2008). Distribution and activity of bats at local and landscape scales within a rural-urban gradient. Urban Ecosystems, 11(2), 227–242.CrossRefGoogle Scholar
  30. Kerns, J., & Kerlinger, P. (2004). A study of bird and bat collision fatalities at the Mountaineer Wind Energy Center, Tucker County, West Virginia: Annual report for 2003. Cape May Point: Curry and Kerlinger, LLC.Google Scholar
  31. Kunz, T. H., Arnett, E. B., Erickson, W. P., Hoar, A. R., Johnson, G. D., Larkin, R. P., et al. (2007). Ecological impacts of wind energy development on bats: Questions, research needs, and hypotheses. Frontiers in Ecology and the Environment, 5(5), 315–324.CrossRefGoogle Scholar
  32. Kuvlesky, W. P., Jr., Brennan, L. A., Morrison, M. L., Boydston, K. K., Ballard, B. M., & Bryant, F. C. (2007). Wind energy development and wildlife conservation: Challenges and opportunities. Journal of Wildlife Management, 71(8), 2487–2498.CrossRefGoogle Scholar
  33. Lacki, M. J. (1984). Temperature and humidity-induced shifts in the flight activity of little brown bats. Ohio Academy of Science, 84(5), 264–266.Google Scholar
  34. Limpert, D. L., Birch, D. L., Scott, M. S., Andre, M., & Gillam, E. (2007). Tree selection and landscape analysis of eastern red bat day roosts. Journal of Wildlife Management, 71(2), 478–486.CrossRefGoogle Scholar
  35. Lott, K. D. (2007). Daily and seasonal patterns of bat activity along Central Appalachian ridges. MSc thesis, Frostburg State University, Frostburg, MD, USA.Google Scholar
  36. Mackiewicz, J., & Backus, R. H. (1956). Oceanic records of Lasionycteris noctivagans and Lasiurus borealis. Journal of Mammalogy, 37(3), 442–443.CrossRefGoogle Scholar
  37. Menzel, M. A., Chapman, B. R., Ford, W. M., Menzel, J. M., & Laerm, J. (2000). A review of the distribution and roosting ecology of bats in Georgia. Georgia Journal of Science, 58(3), 143–178.Google Scholar
  38. Menzel, M. A., Carter, T. C., Menzel, J. M., Ford, W. M., & Chapman, B. R. (2002). Effects of group selection silviculture in bottomland hardwoods on the spatial activity patterns of bats. Forest Ecology and Management, 162(2), 209–218.CrossRefGoogle Scholar
  39. Milne, D. J., Fisher, A., Rainey, I., & Pavey, C. R. (2005). Temporal patterns of bats in the top end of the Northern Territory, Australia. Journal of Mammalogy, 86(5), 909–920.CrossRefGoogle Scholar
  40. Montgomery, D. C., Jennings, C. L., & Kulahci, M. (2008). Introduction to time series analysis and forecasting. Hoboken: Wiley.Google Scholar
  41. Moorman, C. E., Russell, K. R., Menzel, M. A., Lohr, S. M., Ellenberger, J. E., & Van Lear, D. H. (1999). Bats roosting in deciduous leaf litter. Bat Research News, 40, 74–75.Google Scholar
  42. Murray, K. L., Britzke, E. R., & Robbins, L. W. (2001). Variation in search-phase calls of bats. Journal of Mammalogy, 82(3), 728–737.CrossRefGoogle Scholar
  43. National Oceanic and Atmospheric Administration (NOAA) (2004). Climatological data annual summary, Maryland and Delaware (Vol. 128, no. 13).Google Scholar
  44. Norton, A. H. (1930). A red bat at sea. Journal of Mammalogy, 11(2), 225–226.Google Scholar
  45. O’Farrell, M. J., Bradley, W. G., & Jones, G. W. (1967). Fall and winter bat activity at a desert spring in southern Nevada. Southwestern Naturalist, 12(2), 163–171.CrossRefGoogle Scholar
  46. O’Farrell, M. J., Miller, B. W., & Gannon, W. L. (1999). Qualitative identification of free-flying bats using the Anabat detector. Journal of Mammalogy, 80(1), 11–23.CrossRefGoogle Scholar
  47. Paige, K. N. (1995). Bats and barometric pressure: Conserving limited energy and tracking insects from the roost. Functional Ecology, 9(3), 463–467.CrossRefGoogle Scholar
  48. Paradiso, J. L. (1969). Mammals of Maryland. United States Bureau of Sport Fisheries and Wildlife, North American Fauna, No. 66.Google Scholar
  49. Parsons, K. N., Jones, G., & Greenaway, F. (2003). Swarming activity of temperate zone microchiropteran bats: Effects of season, time of night and weather conditions. Journal of Zoology, 261(3), 257–264.CrossRefGoogle Scholar
  50. R Development Core Team (RDCT) (2008). R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing.Google Scholar
  51. Reynolds, D. S. (2006). Monitoring the potential impact of a wind development site on bats in the Northeast. Journal of Wildlife Management, 70(5), 1219–1227.CrossRefGoogle Scholar
  52. SAS Institute, Inc. (2004). SAS/STAT 9.1 users guide. Version 9.1. Cary: SAS Institute, Inc.Google Scholar
  53. Soper, S. J. (2007). N.J. company seeks to erect 150 wind turbines off coast. Berlin, MD: The Dispatch. http://www.mdcoastdispatch.com/article.php?cid=30&id=1676. Accessed 3 June 2008.
  54. Tenaza, R. R. (1966). Migration of hoary bats on South Farallon Island, California. Journal of Mammalogy, 47(3), 533–535.CrossRefGoogle Scholar
  55. Thomas, D. W. (1988). The distribution of bats in different ages of Douglas-fir forests. Journal of Wildlife Management, 52(4), 619–626.CrossRefGoogle Scholar
  56. Turbill, C. (2008). Winter activity of Australian tree-roosting bats: Influence of temperature and climatic patterns. Journal of Zoology, 276(3), 285–290.CrossRefGoogle Scholar
  57. United States Fish and Wildlife Service (USFWS) (2007). Indiana bat (Myotis sodalis) draft recovery plan: First revision. Fort Snelling: United States Fish and Wildlife Service, Region 3.Google Scholar
  58. Whitaker, J. O. Jr., Rose, R. K., & Padgett, T. M. (1997). Food of the red bat Lasiurus borealis in winter in the Great Dismal Swamp, North Carolina and Virginia. American Midland Naturalist, 137(2), 408–411.CrossRefGoogle Scholar
  59. Zar, J. H. (1984). Biostatistical analysis. Englewood Cliffs: Prentice-Hall, Inc.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Joshua B. Johnson
    • 1
  • J. Edward Gates
    • 1
  • Nicolas P. Zegre
    • 2
  1. 1.Appalachian LaboratoryUniversity of Maryland Center for Environmental ScienceFrostburgUSA
  2. 2.Division of Forestry and Natural ResourcesWest Virginia UniversityMorgantownUSA

Personalised recommendations