Skip to main content

Advertisement

Log in

Random-walk model simulation of air pollutant dispersion in atmospheric boundary layer in China

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

In this study, the land–sea breeze circulation model coupled with a random-walk model is developed by the analysis of the formation and the mechanism of the land–sea breeze. Based on the data of the land–sea circulation in Dalian, China, the model simulated the diurnal variation of pressure, flow, temperature, and turbulent kinetic energy field and also provides a basis for solving the air pollutant concentration in the land–sea breeze circulation so as to estimate the economic cost attributable to the atmospheric pollution. The air pollutant concentration in the background of land–sea circulation is also simulated by a Gaussian dispersion model, and the results revealed that the land–sea circulation model coupled with the random-walk model gives a reasonable description of air pollutant dispersion in coastal areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baerentsen, J. H., & Berkowicz, Z. (1984). Monte Carlo simulation of plume dispersion in the convective boundary layer. Atmospheric Environment, 18, 701–712.

    Article  Google Scholar 

  • Boybeyi, Z., Sethu, R., & Zannetti, P. (1995). Numerical investigation of possible role of local meteorology in Bhopal gas accident. Atmospheric Environment, 29(4), 479–496.

    Article  CAS  Google Scholar 

  • Deardor, J. W., & Willis, G. E. (1982). Ground-level concentrations due to fumigation into an entraining mixed layer. Atmospheric environment, 16, 1159–1170.

    Article  Google Scholar 

  • Degrazia, G. A., Carvalho, J. C., Moreira, D. M., Vilhena, M. T., Roberti, D. R., & Magalhaes, S. G. (2007). Derivation of a decorrelation timescale depending on source distance for inhomogeneous turbulence in a convective boundary layer. Physica A, 374, 55–65.

    Article  Google Scholar 

  • Famulari, D., Fowler, D., Nemitz, E., Hargreaves, K. J., et al. (2008). Development of a low-cost system for measuring conditional time-averaged gradients of SO2 and NH3. Environmental Monitoring and Assessment, 161, 11–27.

    Article  Google Scholar 

  • Graziani, G., Martilli, A., Pareschi, M. T. B., & Valenza, M. (1997). Atmospheric dispersion of natural gases at Vulcano island. Journal of Volcanology and Geothermal Research, 75, 283–308.

    Article  CAS  Google Scholar 

  • Hanna, S. R., & Drivas, P. J. (1987). Guidelines for use of vapor clouds dispersion models, New York, centre for chemical process safety (p. 177). New York, NY: American Society of Chemical Engineers.

    Google Scholar 

  • Hurley, P., & Physick, W. (1991). A Lagrangian particle model of fumigation by break down of the nocturnal inversion. Atmospheric Environment, 25(7), 1313–1325.

    Google Scholar 

  • Kassomenos, P. A., Flocas, H. A., Lykoudis, S., & Skouloudis, A. (1998). Spatial and temporal characteristics of the relationship between air quality status and mesoscale circulation over an urban Mediterranean basin. The Science of the Total Environment, 217, 37–57.

    Article  CAS  Google Scholar 

  • Kouchi, A., Ohba, R., & Shao, Y. (1999). Gas diffusion in a convection layer near a coastal region. Journal of Wind Engineering and Industrial Aerodynamics, 81, 171–180.

    Article  Google Scholar 

  • Louis, J. F. (1979). A parametric model of vertical eddy fluxes in the atmosphere. Boundary-Layer Meteorology, 17, 187–202.

    Article  Google Scholar 

  • Lu, R., & Turco, R. P. (1994). Air pollutant transport in a coastal environment. Part I: Two-dimensional simulations of sea-breeze and mountain effects. Journal of the Atmospheric Sciences, 51(5), 2285–2308.

    Article  Google Scholar 

  • Luhar, A., & Sawford, B. L. (1995). An examination of existing shoreline fumigation models and formulation of an improved model. Atmospheric Environment, 30, 609–620.

    Google Scholar 

  • Lyons, W. A., & Cole, H. S. (1973). Fumigation and plume trapping on the shores of Lake Michigan during stable onshore flow. Journal of Applied Meteorology, 12, 495–510.

    Article  Google Scholar 

  • McNider, R. T. (1981). Investigation of the impact of tropospheric circulations on the transport and dispersion of air pollutants. Ph.D. dissertation, Department of Environmental Sciences, University of Virginia, Charlottesville.

  • McNider, R. T., Moran, M. D., & Pielke, R. A. (1998). Influence of diurnal and inertial boundary layer oscillation on long-range dispersion. Atmospheric Environment, 22, 2445–2462.

    Google Scholar 

  • Oza, R. B., Panchal, N. S., Nambi, K. S. V., & Krishnamoorthy, T. M. (2001). Coupling of mesoscale meteorological model with particle trajectory model to study the atmospheric dispersion under sea breeze conditions. Environmental Modelling & Software, 16, 63–71.

    Article  Google Scholar 

  • Pielke, R. A., Cotton, R., Walko, R. L., Tremback, C. J., Lyons, W. A., Grasso, L. D., et al. (1992). A comprehensive meteorological modeling system—RAMS. Meteorology and Atmospheric Physics, 49, 69–91.

    Article  Google Scholar 

  • Pitts, R. O., & Lyons, T. J. (1992). A coupled mesoscale and particle model applied to an urban area. Atmospheric Environment, 26B, 279–289.

    CAS  Google Scholar 

  • Rodriguez, D. J., Greenly, G. D., Gresho, P. M., Lange, R., Lawver, B. S., Lawson, L. A., et al. (1986). User’s guide to the MATHEW/ADPIC models. Livermore, CA: Lawrence Livermore National Laboratory, University of California.

  • Shao, Y. (1992). Turbulent dispersion in coastal atmospheric boundary layers: An application of Lagrangian model. Boundary-Layer Meteorology, 59, 363–385.

    Article  Google Scholar 

  • Shao, Y., Hacker, J. M., & Schwerdtfeger, P. (1991). The structure of turbulence in a coastal atmospheric boundary layer. Quarterly Journal of the Royal Meteorological Society, 117, 1299–1324.

    Article  Google Scholar 

  • Tremback, C. J., & Kessler, R. (1985). A surface temperature and moisture parametrization for use in mesoscale numerical model. In Presented in the 7th conference on numerical weather prediction (pp. 17–20). Montreal, Canada.

  • Triantafyllou, A. G., & Kassomenos, P. A. (2002). Aspects of atmospheric flow and dispersion of air pollutants in a mountainous basin. Science of the Total Environment, 297, 85–103.

    Article  CAS  Google Scholar 

  • Tripoli, G. J., & Cotton, W. (1986). An intense, quasi-steady thunderstorm over mountainous terrain. Part IV: Three-dimensional numerical simulation. Journal of the Atmospheric Sciences, 43, 896–914.

    Article  Google Scholar 

  • Yamazawa, H. (1989). Performance examination of atmospheric model at sea-coast region. Journal of Nuclear Science and Technology, 26(4), 459–472.

    Article  CAS  Google Scholar 

  • Yassin, M. F., Ohba, M., & Tanaka, H. (2008). Experimental study on flow and gaseous diffusion behind an isolated building. Environmental Monitoring and Assessment, 147, 149–158.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peng Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, P., Mu, H. Random-walk model simulation of air pollutant dispersion in atmospheric boundary layer in China. Environ Monit Assess 172, 507–515 (2011). https://doi.org/10.1007/s10661-010-1350-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-010-1350-6

Keywords

Navigation