Environmental Monitoring and Assessment

, Volume 172, Issue 1–4, pp 507–515 | Cite as

Random-walk model simulation of air pollutant dispersion in atmospheric boundary layer in China

  • Peng Wang
  • Hailin Mu


In this study, the land–sea breeze circulation model coupled with a random-walk model is developed by the analysis of the formation and the mechanism of the land–sea breeze. Based on the data of the land–sea circulation in Dalian, China, the model simulated the diurnal variation of pressure, flow, temperature, and turbulent kinetic energy field and also provides a basis for solving the air pollutant concentration in the land–sea breeze circulation so as to estimate the economic cost attributable to the atmospheric pollution. The air pollutant concentration in the background of land–sea circulation is also simulated by a Gaussian dispersion model, and the results revealed that the land–sea circulation model coupled with the random-walk model gives a reasonable description of air pollutant dispersion in coastal areas.


Random-walk model Atmospheric boundary layer Gaussian dispersion model Land–sea breeze Fumigation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Baerentsen, J. H., & Berkowicz, Z. (1984). Monte Carlo simulation of plume dispersion in the convective boundary layer. Atmospheric Environment, 18, 701–712.CrossRefGoogle Scholar
  2. Boybeyi, Z., Sethu, R., & Zannetti, P. (1995). Numerical investigation of possible role of local meteorology in Bhopal gas accident. Atmospheric Environment, 29(4), 479–496.CrossRefGoogle Scholar
  3. Deardor, J. W., & Willis, G. E. (1982). Ground-level concentrations due to fumigation into an entraining mixed layer. Atmospheric environment, 16, 1159–1170.CrossRefGoogle Scholar
  4. Degrazia, G. A., Carvalho, J. C., Moreira, D. M., Vilhena, M. T., Roberti, D. R., & Magalhaes, S. G. (2007). Derivation of a decorrelation timescale depending on source distance for inhomogeneous turbulence in a convective boundary layer. Physica A, 374, 55–65.CrossRefGoogle Scholar
  5. Famulari, D., Fowler, D., Nemitz, E., Hargreaves, K. J., et al. (2008). Development of a low-cost system for measuring conditional time-averaged gradients of SO2 and NH3. Environmental Monitoring and Assessment, 161, 11–27.CrossRefGoogle Scholar
  6. Graziani, G., Martilli, A., Pareschi, M. T. B., & Valenza, M. (1997). Atmospheric dispersion of natural gases at Vulcano island. Journal of Volcanology and Geothermal Research, 75, 283–308.CrossRefGoogle Scholar
  7. Hanna, S. R., & Drivas, P. J. (1987). Guidelines for use of vapor clouds dispersion models, New York, centre for chemical process safety (p. 177). New York, NY: American Society of Chemical Engineers.Google Scholar
  8. Hurley, P., & Physick, W. (1991). A Lagrangian particle model of fumigation by break down of the nocturnal inversion. Atmospheric Environment, 25(7), 1313–1325.Google Scholar
  9. Kassomenos, P. A., Flocas, H. A., Lykoudis, S., & Skouloudis, A. (1998). Spatial and temporal characteristics of the relationship between air quality status and mesoscale circulation over an urban Mediterranean basin. The Science of the Total Environment, 217, 37–57.CrossRefGoogle Scholar
  10. Kouchi, A., Ohba, R., & Shao, Y. (1999). Gas diffusion in a convection layer near a coastal region. Journal of Wind Engineering and Industrial Aerodynamics, 81, 171–180.CrossRefGoogle Scholar
  11. Louis, J. F. (1979). A parametric model of vertical eddy fluxes in the atmosphere. Boundary-Layer Meteorology, 17, 187–202.CrossRefGoogle Scholar
  12. Lu, R., & Turco, R. P. (1994). Air pollutant transport in a coastal environment. Part I: Two-dimensional simulations of sea-breeze and mountain effects. Journal of the Atmospheric Sciences, 51(5), 2285–2308.CrossRefGoogle Scholar
  13. Luhar, A., & Sawford, B. L. (1995). An examination of existing shoreline fumigation models and formulation of an improved model. Atmospheric Environment, 30, 609–620.Google Scholar
  14. Lyons, W. A., & Cole, H. S. (1973). Fumigation and plume trapping on the shores of Lake Michigan during stable onshore flow. Journal of Applied Meteorology, 12, 495–510.CrossRefGoogle Scholar
  15. McNider, R. T. (1981). Investigation of the impact of tropospheric circulations on the transport and dispersion of air pollutants. Ph.D. dissertation, Department of Environmental Sciences, University of Virginia, Charlottesville.Google Scholar
  16. McNider, R. T., Moran, M. D., & Pielke, R. A. (1998). Influence of diurnal and inertial boundary layer oscillation on long-range dispersion. Atmospheric Environment, 22, 2445–2462.Google Scholar
  17. Oza, R. B., Panchal, N. S., Nambi, K. S. V., & Krishnamoorthy, T. M. (2001). Coupling of mesoscale meteorological model with particle trajectory model to study the atmospheric dispersion under sea breeze conditions. Environmental Modelling & Software, 16, 63–71.CrossRefGoogle Scholar
  18. Pielke, R. A., Cotton, R., Walko, R. L., Tremback, C. J., Lyons, W. A., Grasso, L. D., et al. (1992). A comprehensive meteorological modeling system—RAMS. Meteorology and Atmospheric Physics, 49, 69–91.CrossRefGoogle Scholar
  19. Pitts, R. O., & Lyons, T. J. (1992). A coupled mesoscale and particle model applied to an urban area. Atmospheric Environment, 26B, 279–289.Google Scholar
  20. Rodriguez, D. J., Greenly, G. D., Gresho, P. M., Lange, R., Lawver, B. S., Lawson, L. A., et al. (1986). User’s guide to the MATHEW/ADPIC models. Livermore, CA: Lawrence Livermore National Laboratory, University of California.Google Scholar
  21. Shao, Y. (1992). Turbulent dispersion in coastal atmospheric boundary layers: An application of Lagrangian model. Boundary-Layer Meteorology, 59, 363–385.CrossRefGoogle Scholar
  22. Shao, Y., Hacker, J. M., & Schwerdtfeger, P. (1991). The structure of turbulence in a coastal atmospheric boundary layer. Quarterly Journal of the Royal Meteorological Society, 117, 1299–1324.CrossRefGoogle Scholar
  23. Tremback, C. J., & Kessler, R. (1985). A surface temperature and moisture parametrization for use in mesoscale numerical model. In Presented in the 7th conference on numerical weather prediction (pp. 17–20). Montreal, Canada.Google Scholar
  24. Triantafyllou, A. G., & Kassomenos, P. A. (2002). Aspects of atmospheric flow and dispersion of air pollutants in a mountainous basin. Science of the Total Environment, 297, 85–103.CrossRefGoogle Scholar
  25. Tripoli, G. J., & Cotton, W. (1986). An intense, quasi-steady thunderstorm over mountainous terrain. Part IV: Three-dimensional numerical simulation. Journal of the Atmospheric Sciences, 43, 896–914.CrossRefGoogle Scholar
  26. Yamazawa, H. (1989). Performance examination of atmospheric model at sea-coast region. Journal of Nuclear Science and Technology, 26(4), 459–472.CrossRefGoogle Scholar
  27. Yassin, M. F., Ohba, M., & Tanaka, H. (2008). Experimental study on flow and gaseous diffusion behind an isolated building. Environmental Monitoring and Assessment, 147, 149–158.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Key Laboratory of Ocean Energy Utilization and Energy Conservation of the Ministry of EducationDalian University of TechnologyLiaoningChina

Personalised recommendations