Environmental Monitoring and Assessment

, Volume 171, Issue 1–4, pp 441–456 | Cite as

Urban and suburban aerosol in Yokohama, Japan: a comprehensive chemical characterization

  • Md. Firoz Khan
  • Yuichiro Shirasuna
  • Koichiro Hirano
  • Shigeki Masunaga


This article analyses elemental composition of suspended particulate matter (SPM) samples collected monthly from 1999 to 2005 at two locations in Yokohama, Japan. Microwave digestion and inductively coupled plasma mass spectroscopy was employed to measure Mg, Al, Ca, V, Cr, Mn, Ni, Cu, Zn, Ga, As, Se, Rb, Sr, Ag, Cd, Cs, Ba, Pb, and Bi. Water-soluble ions (Na + , NH4  + , K + , Ca2 + , Cl − , NO3  − , and SO4 2 − ) and carbonaceous mass (elemental and organic carbon) were detected using ion chromatograph and CHN analyzer, respectively. The results indicate that the composition of SPM on one of the sites is determined by automobile emissions and on the other by industrial combustions. The impact of the emission regulations for automobiles in large Japanese cities, which were enacted during 2002 and 2003, on the SPM composition of the samples is also studied.


Suspended particulate matter Trace metals Carbonaceous aerosol 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Báez, P. A., García, M. R., Torres, B. M., Del, C., Padilla, H. G., Belmont, R. D., et al. (2007). Origin of trace elements and inorganic ions in PM10 aerosols to the South of Mexico City. Atmospheric Research, 85(1), 52–63.CrossRefGoogle Scholar
  2. Bem, H., Gallorini, M., Rizzio, E., & Krzemińska, M. (2003). Comparative studies on the concentrations of some elements in urban air particulate matter in Lodz City of Poland and in Milan, Italy. Environmental International, 29, 423–428.CrossRefGoogle Scholar
  3. Birmili, W., Allen, A. G., Bary, F., & Harrison, R. M. (2006). Trace metal concentrations and water solubility in size-fractionated atmospheric particles and influence of road traffic. Environmental Science and Technology, 40, 1144–1153.CrossRefGoogle Scholar
  4. Brunner, P. H., & Rechberger, H. (2004). Practical handbook of material flow analysis (pp. 287–288). Boca Raton: Lewis.Google Scholar
  5. Buzica, D., Gerboles, M., Borowiak, A., Trincherini, P., Passarella, R., & Pedroni, V. (2006). Comparison of voltammetry and inductively coupled plasma-mass spectrometry for the determination of heavy metals in PM10 airborne particulate matter. Atmospheric Environment, 40, 4703–4710.CrossRefGoogle Scholar
  6. Canepari, S., Cardarelli, E., Giuliano, A., & Pietrodangelo, A. (2006). Determination of metals, metalloids and non-volatile ions in airborne particulate matter by a new two-step sequential leaching procedure. Part A: Experimental design and optimization. Talanta, 69, 581–587.CrossRefGoogle Scholar
  7. De Miquel, E., Llamas, J. F., Chacón, E., Berg, T., Larssen, S., Royset, O., et al. (1997). Origin and patterns of distribution of trace element in street dust: Unleaded petrol and urban lead. Atmospheric Environment, 17, 2733–2740.CrossRefGoogle Scholar
  8. Dockery, D. W., Pope, C. A., Xu, X., Spengler, J. D., Ware, J. H., Fay, M. E., et al. (1993). An association between air pollution and mortality in six U.S. cities. The New England Journal of Medicine, 329, 1753–1759.CrossRefGoogle Scholar
  9. Fukuyama, T., & Fujiwara, H. (2008). Contribution of Asian dust to atmospheric deposition of radioactive cesium (137Cs). Science of the Total Environment, 405(1–3), 389–395.CrossRefGoogle Scholar
  10. Funasaka, K., Sakai, M., Shinya, M., Miyazaki, T., Kamiura, T., Kaneco, S., et al. (2003). Size distributions and characteristics of atmospheric inorganic particles by regional comparative study in Urban Osaka, Japan. Atmospheric Environment, 37, 4597–4605.CrossRefGoogle Scholar
  11. Garg, B., Cadle, S. H., Mulawa, P. A., Groblicki, P. J., Laroo, C., & Parr, G. A. (2000). Brake wear particulate matter emissions. Environmental Science and Technology, 21, 4463–4469.CrossRefGoogle Scholar
  12. Grossi, C. M., & Brimblecombe, P. (2002). The effect of atmospheric pollution on building materials. Journal of Physics IV France, 12, 10–197.Google Scholar
  13. Harrison, R. M., Jones, A. M., & Lawrence, R. G. (2003). A pragmatic mass closure model for airborne particulate matter at urban background and roadside locations. Atmospheric Environment, 37, 4927–4933.CrossRefGoogle Scholar
  14. Harrison, R. M., Smith, D. J. T., Pio, C. A., & Castro, L. M. (1996). Source apportionment of atmospheric polycyclic aromatic hydrocarbons collected from an urban location in Birmingham, UK. Environmental Science and Technology, 30(3), 825–832.CrossRefGoogle Scholar
  15. Japan Environmental Council (2003). Future policy for motor vehicle emission reduction (eighth report), February 22.Google Scholar
  16. Kanai, Y., Ohta, A., Kamioka, H., Imai, N., Shimizu, H., Takahashi, Y., et al. (2005). Observation of mass concentration and particle size of atmospheric aerosol in East Asia and dry deposition in Tsukuba in combination with optical particle counter observation. Bulletin of the Geological Survey of Japan, 56(7–8), 273–301.Google Scholar
  17. Mar, T. F., Norris, G. A., Koenig, J. Q., & Larson, T. V. (2000). Association between air pollution and mortality in Phoenix, 1995–1997. Environmental Health Perspective, 108(4), 347–353.CrossRefGoogle Scholar
  18. Ministry of Land, Infrastructure and Transport, Japan (2005). Report of road traffic census in Yokohama.Google Scholar
  19. Mori, I., Sun, Z., Ukachi, M., Nagano, K., Mcleod, C. W., Cox, A. G., et al. (2008). Development and certification of the new NIES CRM 28: Urban aerosols for the determination of multielements. Analytical & Bioanalytical Chemistry, 391, 1997–2003.CrossRefGoogle Scholar
  20. Murakami, Y., & Ono, M. (2006). Myocardial infarction deaths after high level exposure to particulate matter. Journal of Epidemiology and Community Health, 60, 262–266.CrossRefGoogle Scholar
  21. Okuda, T., Tenmoku, M., Kato, J., Junya, M., Sato, T., Yokochi, R., et al. (2006). Long-term observation of trace metal concentration in aerosols at a remote island, Rishiri, Japan by using inductively coupled plasma mass spectrometry equipped with laser ablation. Water, Air, & Soil Pollution, 174(1–4), 3–17.CrossRefGoogle Scholar
  22. Omori, T., Fujimoto, G., Yoshimura, I., Nitta, H., & Ono, M. (2003). Effects of particulate matter on daily mortality in 13 Japanese cities. Journal of Epidemiology, 13(6), 314–322.Google Scholar
  23. Oura, Y., Iguchi, H., Nagahata, T., Nakamatsu, H., Otoshi, T., & Ebihara, M. (2007). Elemental compositions of atmospheric particulates collected in Japan from 2002 to 2004. Journal of Radioanalytical and Nuclear Chemistry, 272(2), 381–385.CrossRefGoogle Scholar
  24. Pacyna, J. M. (1998). Source inventories for atmospheric trace metals. In R. M. Harrison, & R. E. van Grieken (Eds.), Atmospheric particles. IUPAC series on analytical and physical chemistry of environmental systems (Vol. 5, pp. 385–423). Chichester: Wiley.Google Scholar
  25. Perrino, C., Canepari, S., Cardarelli, E., Catrambone, M., & Sargolini, T. (2008). Inorganic constituents of urban air pollution in the Lazio region (Central Italy). Environmental Monitoring and Assessment, 136, 69–86.CrossRefGoogle Scholar
  26. Pope, C. A. 3rd, & Dockery, D. W. (2006). Health effects of fine particulate air pollution: Lines that connect. Journal of Air & Waste Management Association, 56, 709–742.Google Scholar
  27. Pope, C. A., Dockery, D. W., & Schwartz, J. (1995a). Review of epidemiological evidence of health effects of particulate air pollution. Inhalation Toxicology, 7, 1–18.CrossRefGoogle Scholar
  28. Pope, C. A. 3rd, Thun, M. J., Namboodiri, M. M., Dockery, D. W., Evans, J. S., Speizer, F. E., et al. (1995b). Particulate air pollution as a predictor of mortality in a prospective study of US adults. American Journal of Respiratory and Critical Care Medicine, 151, 669–674.Google Scholar
  29. Russell, L. M. (2003). Aerosol organic-mass-to-organic-carbon ratio measurements. Environmental Science & Technology, 37, 2982–2987.CrossRefGoogle Scholar
  30. Seinfeld, J., & Pandis, S. N. (2006). Atmospheric chemistry and physics: From air pollution to climate change. New York: Wiley.Google Scholar
  31. Slezakova, K., Pereira, M. C., Reis, M. A., & Alvim-Ferraz, M. C. (2007). Influence of traffic emissions on the composition of atmospheric particles of different sizes—part 1: Concentration and elemental characterization. Journal of Atmospheric Chemistry, 58, 55–68.CrossRefGoogle Scholar
  32. Smolders, E., & Degryse, F. (2002). Fate and effect of zinc from tyre debris in soil. Environmental Science & Technology, 36, 3706–3710.CrossRefGoogle Scholar
  33. Sörme, L., Bergbäck, B., & Lohm, U. (2001). Goods in the anthroposphere as a metal emissions source - a case study of Stockholm, Sweden. Water, Air, and Soil pollution: Focus, 1, 213–227.CrossRefGoogle Scholar
  34. Srivastava, A., Gupta, S., & Jain, V. K. (2008). Source apportionment of total suspended particulate matter in coarse and fine size ranges over Delhi. Aerosol and Air Quality Research, 8(2), 188–200.Google Scholar
  35. Takahashi, K., Minoura, H., & Sakamoto, K. (2008). Chemical composition of atmospheric aerosols in the general environment and around a trunk road in the Tokyo metropolitan area. Atmospheric Environment, 42, 113–125.CrossRefGoogle Scholar
  36. Takegawa, N., Miyazaki, Y., Kondo, Y., Komazaki, Y., Miyakawa, T., & Jimenez, J. L. (2005). Characterization of an aerodyne aerosol mass spectrometer (AMS): Intercomparison with other aerosol instruments. Aerosol Science and Technology, 39, 760–770.Google Scholar
  37. Torfs, K., & Van Grieken, R. (1997). Chemical relations between atmospheric aerosols, deposition and stone decay layers on historic buildings at the Mediterranean coast. Atmospheric Environment, 31, 2179–2192.CrossRefGoogle Scholar
  38. Turpin, B. J., & Lim, H.-J. (2001). Species contributions to PM2.5 mass concentrations: Revising common assumptions for estimating organic mass. Aerosol Science and Technology, 35, 602–610.CrossRefGoogle Scholar
  39. Var, F., Narita, Y., & Tanaka, S. (2000). The concentration, trend and seasonal variation of metals in the atmosphere in 16 Japanese cities shown by the results of National Air Surveillances Network (NASN) from 1974 to 1996. Atmospheric Environment, 34, 2755–2770.CrossRefGoogle Scholar
  40. Wang, H., & Shooter, D. (2001). Water soluble ions of atmospheric aerosols in three New Zealand cities: seasonal changes and sources. Atmospheric Environment, 35, 6031–6040.CrossRefGoogle Scholar
  41. Wang, X., Sato, T., & Xing, B. (2006). Size distribution and anthropogenic sources apportionment of airborne trace metals in Kanazawa, Japan. Chemosphere, 65, 2440–2448.CrossRefGoogle Scholar
  42. Wang, X., Sato, T., Xing, B., Tamamura, S., & Tao, S. (2005). Source identification, size distribution and indicator screening of airborne trace metals in Kanazawa, Japan. Journal of Aerosol Science, 36, 197–210.CrossRefGoogle Scholar
  43. Wang, Y. F., Huang, K. L., Li, C. T., Mi, H. H., Luo, J. H., & Tsai, P. J. (2003). Emissions of fuel metals content from a diesel vehicle engine. Atmospheric Environment, 37, 4637–4643.CrossRefGoogle Scholar
  44. Watson, J. G. (2002). Visibility: Science and regulation. Journal of Air & Waste Management Association, 52, 628–713.Google Scholar
  45. Wei, F., Teng, E., Wu, G., Hu, W., Wilson, W. E., Chapman, R. S., et al. (1999). Ambient concentrations and elemental compositions of PM10 and PM2.5 in four Chinese cities. Environmental Science & Technology, 33, 4188–4193.CrossRefGoogle Scholar
  46. Yamazaki, S., Nitta, H., Ono, M., Green, J., & Fukuhara, S. (2007). Intracerebral haemorrhage associated with hourly concentration of ambient particulate matter: Case-crossover analysis. Occupational & Environmental Medicine, 64, 17–24.CrossRefGoogle Scholar
  47. Yaroshevsky, A. A. (2006). Abundances of chemical elements in the Earth’s crust. Geochemical International, 44(1), 48–55.CrossRefGoogle Scholar
  48. Yorifuji, T., Yamamoto, E., Tsuda, T., & Kawakami, N. (2005). Health impact assessment of particulate matter in Tokyo, Japan. Archives of Environmental & Occupational Health, 60(4), 79–85.CrossRefGoogle Scholar
  49. Yue, W., Li, X., Liu, J., Li, Y., Zhang, G., & Li, Y. (2007). Source tracing of chromium-, manganese-, nickel-, and zince-containing particles (PM10) by micro-PIXE spectrum. Journal of Radioanalytical and Nuclear Chemistry, 274(1), 115–121.CrossRefGoogle Scholar
  50. Zhang, F. S., Yamasaki, S., & Nanzyo, M. (2002). Waste ashes for use in agricultural production: I. Liming effect, contents of plant nutrients and chemical characteristics of some metals. Science of the Total Environment, 284, 215–225.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Md. Firoz Khan
    • 1
  • Yuichiro Shirasuna
    • 2
  • Koichiro Hirano
    • 2
  • Shigeki Masunaga
    • 1
  1. 1.Graduate School of Environment & Information SciencesYokohama National UniversityYokohamaJapan
  2. 2.Yokohama City Research Institute for Environmental ScienceYokohamaJapan

Personalised recommendations