Environmental Monitoring and Assessment

, Volume 170, Issue 1–4, pp 117–128 | Cite as

Assessment of water quality parameters of the Harike wetland in India, a Ramsar site, using IRS LISS IV satellite data

  • Samson Okongo Mabwoga
  • Amit Chawla
  • Ashwani Kumar Thukral


This study aims at the classification and water quality assessment of Harike wetland (Ramsar site) in India using satellite images from the Indian Remote Sensing satellite, Resourcesat (IRS P6). The Harike wetland is a converging zone of two rivers, Beas and Sutlej. The satellite images of IRS Linear Imaging Self Scanner (LISS) IV multispectral sensor with three bands (green, red, and near infrared (NIR)) and a spatial resolution of 5.8 m were classified using supervised image classification techniques. Field points for image classification and water sampling were recorded using a Garmin eTrex Global Positioning System. The water quality parameters assessed were dissolved oxygen, conductivity, pH, turbidity, total and suspended solids (SS), chemical oxygen demand, and Secchi disk transparency (SDT). Correlations were established between turbidity and SS, SS and SDT, and total solids and turbidity. Using reflectance values from the green, red, and NIR bands, we then plotted the water quality parameters with the mean digital number values from the satellite imagery. The NIR band correlated significantly with the water quality parameters, whereas, using SDT values, it was observed that the green and the red reflectance bands were able to distinguish the waters from the two rivers, which have different water qualities.


River Beas River Sutlej Remote sensing Secchi disk transparency 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alparslan, E., Aydöner, C., Tufekci, V., & Tüfekci, H. (2007). Water quality assessment at Ömerli Dam using remote sensing techniques. Environmental Monitoring and Assessment, 135, 391–398.CrossRefGoogle Scholar
  2. Anderson, B. (1990). Identification and inventory of aquatic plant communities using remote sensing. Folia Geobotanica & Phytotaxonomica, 25, 227–233.Google Scholar
  3. Anonymous (2008). The list of wetlands of international importance. Retrieved from Convention on Wetlands (Ramsar, Iran, 1971). Accessed 1 August 2008.
  4. APHA (1989). In D. A. Eaton, S. L. Clesceri, W. E. Rice, & E. A. Greenberg (Eds.), Standard methods for the examination of water and wastewater (17th ed.). Washington: American Public Health Association.Google Scholar
  5. Baban, J. S. (1993). Detecting water quality parameters in the Norfolk Broads, U.K., using Landsat imagery. International Journal of Remote Sensing, 14(7), 1247–1267.CrossRefGoogle Scholar
  6. Brezonik, L. P., & Bauer, E. M. (2003). Assessment of Minnesota lakes and wetlands using satellite imagery. WRC Staff-Generated Research Program. Accessed 1 August 2008.
  7. Brezonik, L. P., Menken, D. K., & Bauer, E. M. (2005). Landsat-based remote sensing of lake water quality characteristics, including chlorophyll and colored dissolved organic matter (CDOM). Lake and Reservoir Management, 21(4), 373–382.CrossRefGoogle Scholar
  8. Brezonik, L. P., Olmanson, G. L., Bauer, E. M., & Kloiber, M. S. (2007). Measuring water clarity and quality in Minnesota lakes and rivers: A census based approach using remote sensing techniques. CURA Reporter, 37(3), 3–313. Accessed 20 October 2008.Google Scholar
  9. Chopra, R., Verma, V. K., & Sharma, P. K. (2001). Mapping, monitoring and conservation of Harike wetland ecosystem, Punjab, India through remote sensing. International Journal of Remote Sensing, 22, 89–98.CrossRefGoogle Scholar
  10. Choubey, V. K. (1992). Correlation of turbidity with Indian Remote Sensing Satellite-1A data. Hydrological Sciences, 37, 129–140.CrossRefGoogle Scholar
  11. Dewidar, K., & Khedr, A. (2001). Water quality assessment with simultaneous Landsat-5 TM at Manzala Lagoon, Egypt. Hydrobiologia, 487, 49–58.CrossRefGoogle Scholar
  12. ERDAS, Inc. (1999). ERDAS Imagine Tour Guides. ERDAS Imagine V8.4, Atlanta, GA:. ERDAS Inc. 656 pp.Google Scholar
  13. Fuller, L. M., Aichele, S. S., & Minnerick, R. J. (2002a). Predicting water quality by relating Secchi Disk transparency and chlorophyll a measurements to satellite imagery for Michigan lakes. Scientific Investigation Report, Accessed 20 October 2008.
  14. Fuller, L. M., Aichele, S. S., & Minnerick, R. J. (2002b). Predicting water quality by relating Secchi Disk transparency and chlorophyll a measurements to satellite imagery for Michigan lakes. Scientific Investigation Report, Accessed 20 October 2008.
  15. Fuller, L. M., Aichele, S. S., & Minnerick, R. J. (2004). Predicting water quality by relating Secchi-disk transparency and chlorophyll a measurements to satellite imagery for Michigan inland lakes, August 2002: U.S. Geological Survery Scientific Investigations Report 2004-5086, 25. Accessed 20 October 2008.Google Scholar
  16. Hong-yu, L. (1998). Conservation of wetlands especially as waterfowl habitat in northeast China. Chinese Geographical Science, 8, 281–288.CrossRefGoogle Scholar
  17. Jain, K. S., Sarkar, A., & Garg, V. (2008). Impact of declining trend of flow on Harike Wetland, India. Water Resources Management, 22, 409–421.CrossRefGoogle Scholar
  18. Kloiber, S. M., Brezonik, P. L., Olmanson, L. G., & Bauer, M. E. (2002). A procedure for regional lake water clarity assessment using Landsat multispectral data. Remote Sensing of Environment, 82, 38–47.CrossRefGoogle Scholar
  19. Ladhar, S. S. (2002). Status of ecological health of wetlands in Punjab, India. Aquatic Ecosystem Health and Management, 5, 457–465.CrossRefGoogle Scholar
  20. Li, R., & Li, J. (2004). Satellite remote sensing technology for lake water clarity monitoring: An overview. Environmental Informatics Archives, 2, 893–901.Google Scholar
  21. Lillesand, T. M. (2002). Combining satellite remote sensing and volunteer Secchi disk measurement for lake transparency monitoring. In Proceedings: National monitoring conference, National Water Quality Monitoring Council. Accessed 1 October 2008.
  22. Lillesand, M. T., & Kiefer, W. R. (2000). Remote sensing and image interpretation (4th ed.). New York: Wiley.Google Scholar
  23. Michaud, P. J. (1991). A citizen’s guide to understanding and monitoring lakes and streams. Accessed 1 October 2008.
  24. Min Wu, M., Zhang, W., Wang, X., & Luo, D. (2009). Application of MODIS satellite data in monitoring water quality parameters of Chaohu Lake in China. Environmental Monitoring Assessment, 148, 255–264.CrossRefGoogle Scholar
  25. Nelson, S. A. C., Soranno, P. A., Cheruvelil1, K. S., Batzli, S. A., & Skole, D. L. (2003). Regional assessment of lake water clarity using satellite remote sensing. Papers from Bolsena Conference (2002). Residence time in lakes: Science, Management, Education, Journal Limnology, 62(1), 27–32. Accessed 16 March 2008.Google Scholar
  26. Olmanson, G. L., Kloiber, M. S., Bauer, E. M., & Brezonik, L. M. (2001). Image processing protocol for regional assessments of lake water quality. Water Resources Center and Remote Sensing Laboratory, University of Minnesota, Public Report Series #14, 19 pp. Accessed 20 October 2008.Google Scholar
  27. Olmanson, G. L., Bauer, E. M., & Brezonik, L. P. (2002a). Use of Landsat imagery to develop a water quality atlas of Minnesota’s 10,000 lakes. Pecora 15/Land Satellite Information IV/ISPRS Commission I/FIEOS 2002 Conference Proceedings. Accessed 30 August 2008.
  28. Olmanson, G. L., Kloiber, M. S., Bauer, E. M., & Brezonik, L. P. (2002b). Lake water quality image processing protocol for regional assessments. Water Resources Center and Remote Sensing Laboratory, Technical Report 146, 3rd ed.Google Scholar
  29. Ramsar Convention Secretariat (2006). The Ramsar Convention Manual: A guide to the convention on wetlands (Ramsar, Iran, 1971) (4th ed.). Switzerland: Gland.Google Scholar
  30. Schloss, L. A., Spencer, A. J., Haney, J., Bradt, S., & Nowak, J. C. (2002). Using Landsat TM data to aid the assessment of long-term trends in lake water quality in New Hampshire lakes. IEEE Xplore, 5, 3095–3098.Google Scholar
  31. Seyham, E., & Dekker, A. (1986). Applications of remote sensing techniques for water quality monitoring. Hydrological Bulletin, 20(2), 41–50.CrossRefGoogle Scholar
  32. Silva, F. S. T., Costa, P. F. M., Melack, M. J., & Novo, M. L. M. E. (2008). Remote sensing of aquatic vegetation: theory and applications. Environmental Monitoring Assessment, 140, 131–145.CrossRefGoogle Scholar
  33. WHO (2006). Guidelines for drinking water quality. Incorporating 1st addendum (3rd ed.). Geneva: World Health Organization.Google Scholar
  34. WWF (1992). India’s wetlands, mangroves and coral reefs. New Delhi: WWF.Google Scholar
  35. WWF (2008a). The dolphin returns. Accessed 01 August 2008.

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Samson Okongo Mabwoga
    • 1
  • Amit Chawla
    • 2
  • Ashwani Kumar Thukral
    • 1
  1. 1.Department of Botanical & Environmental SciencesGuru Nanak Dev UniversityPunjabIndia
  2. 2.Biodiversity DivisionInstitute of Himalayan Bioresource Technology (Council for Scientific and Industrial Research)Palampur (H.P)India

Personalised recommendations