Environmental Monitoring and Assessment

, Volume 169, Issue 1–4, pp 619–630 | Cite as

Magnetic susceptibility measurements as proxy method to monitor soil pollution: the case study of S. Nicola di Melfi

  • Mariagrazia D’Emilio
  • Rosa Caggiano
  • Rosa Coppola
  • Maria Macchiato
  • Maria Ragosta


The development of in situ, cheep, noninvasive, and fast strategies for soil monitoring is a crucial task for environmental research. In this paper, we present the results of three field surveys carried out in an industrial area of Southern Italy: S. Nicola di Melfi. The monitoring procedure is based on soil magnetic susceptibility measurements carried out by means of experimental protocols that our research group developed during the last years. This field surveys is supported by both geological characterization of the area and analytical determinations of metal concentrations in soils. Magnetic studies were carried out not only in situ but also in laboratory. Results show that, taking into account the influence due to the geomorphologic difference, soil magnetic susceptibility is an optimal indicator of the anthropogenic impact. So, our monitoring strategy discloses that the combined use of magnetic susceptibility measurements and soil geomorphology information may be used as a useful tool for the temporal monitoring of pollution evolution and for a fast screening of polluted zones.


Field survey Heavy metals Magnetic susceptibility Proxy variable Soil pollution 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bityukova, L., Scholger, R., & Birke, M. (1999). Magnetic susceptibility as indicator of environmental pollution of soils in Tallinn. Physics and Chemistry of the Earth (A), 24, 829–835.CrossRefGoogle Scholar
  2. Bonfiglio, A., Macchiato, M., Minervini, L., Ragosta, M., & Santangelo, R. (1998). Pollutant diffusion model and GIS integration procedure for evaluating atmospheric emissions in industrial areas. In C. A. Brebbia, C. F. Ratto, & H. Power (Eds.), Air pollution VI (pp. 849–858). Southampton: WIT Press CMP.Google Scholar
  3. Caggiano, R., Macchiato, M., & Ragosta, M. (1998). Background level of heavy-metals soil concentrations in an industrial area of Basilicata region (Southern Italy). Il Nuovo Cimento C, 21, 49–63.Google Scholar
  4. Chaparro, M. A. E., Bidegain, J. C., Sinito, A. M., Jurado, S. S., & Gogorza, C. S. G. (2004). Magnetic studies applied to different environments (soils and stream sediments) from a relatively polluted area in Buenos Aires Province, Argentina. Environmental Geology, 45, 654–664.CrossRefGoogle Scholar
  5. Chianese, D., D’Emilio, M., Bavusi, M., Lapenna, V., & Macchiato, M. (2006). Magnetic and ground probing radar measurements for soil pollution mapping in the industrial area of Val Basento. Environmental Geology, 49, 389–404.CrossRefGoogle Scholar
  6. Corwin, D. L., Lesch, T. S. M., Oster, J. D., & Kaffka, S. R. (2006). Monitoring management induced spatio-temporal changes in soil quality through soil sampling directed by apparent electrical conductivity. Geoderma, 131, 369–387.CrossRefGoogle Scholar
  7. Dearing, J. A., Hay, K. L., Baban, S. M. J., Huddleston, A. S., Wellington, E. M. H., & Loveland, P. J. (1996). Magnetic susceptibility of soil: An evaluation of conflicting theories using a national data set. Geophysical Journal International, 127, 728–734.CrossRefGoogle Scholar
  8. D’Emilio, M., Chianese, D., Coppola, R., Macchiato, M., & Ragosta, M. (2007). Magnetic susceptibility measurements as proxy method to monitor soil pollution: Development of experimental protocols for field surveys. Environmental Monitoring and Assessment, 125, 137–146.CrossRefGoogle Scholar
  9. Durza, O. (1999). Heavy metals contamination and magnetic susceptibility in soils around metallurgical plant. Physics and Chemistry of the Earth (A), 24, 541–543.CrossRefGoogle Scholar
  10. Fialova, H., Maier, G., Petrovsky′, E., Kapic¡ka, A., Boyko, T., Scholger, R. et al. (2006). Magnetic properties of soils from sites with different geological and environmental settings. Journal of Applied Geophysics, 59, 273–283.CrossRefGoogle Scholar
  11. Hanesch, M., Rantitsch, G., Hemetsberger, S., & Scholger, R. (2007). Lithological and pedological influences on the magnetic susceptibility of soil: Their consideration in magnetic pollution mapping. Science of the Total Environment, 382, 351–363.CrossRefGoogle Scholar
  12. Hernandez, L., Probst, A., Probst, J. L., & Ulrich, E. (2003). Heavy metal distribution in some French forest soils: Evidence for atmospheric contamination. Science of the Total Environment, 312, 195–219.CrossRefGoogle Scholar
  13. Ibáñez, R., Andrés, A., Viguri, J. R., Ortiz, I., & Irabien, J. A. (2000). Characterisation and management of incinerator wastes. Journal of Hazardous Materials, 79, 215–227.CrossRefGoogle Scholar
  14. Jordanova, N., Jordanova, D., Henry, B., Le Goff, M., Dimov, D., & Tsacheva, T. (2006). Magnetism of cigarette ashes. Journal of Magnetism and Magnetic Materials, 301, 50–66.CrossRefGoogle Scholar
  15. Jordanova, N., Jordanova, D., & Tsacheva, T. (2008). Application of magnetometry for delineation of anthropogenic pollution in areas covered by various soil types. Geoderma, 144, 557–571.CrossRefGoogle Scholar
  16. Kapicka, A., Jordanova, N., Petrovský, E., & Podrázský, V. (2003). Magnetic study of weakly contaminated forest soils. Water, Air and Soil Pollutants, 148, 31–44.CrossRefGoogle Scholar
  17. Lecoanet, H., Leveque, F., & Ambrosi, J. P. (2001). Magnetic properties of salt-marsh soils contaminated by iron industry emissions southeast France. Journal of Applied Geophysics, 48, 67–81.CrossRefGoogle Scholar
  18. Magiera, T., Strzyszcz, Z., Kapicka, A., & Petrovsky, E. (2006). Discrimination of lithogenic and anthropogenic influences on topsoil magnetic susceptibility in Central Europe. Geoderma, 130, 299–311.CrossRefGoogle Scholar
  19. Ministerial Decree (1992). Italian Official Gazzette no. 121, 25 May 1992.Google Scholar
  20. Ministerial Decree (1999). Italian Official Gazzette no. 248, 21 October 1999.Google Scholar
  21. Ng, S. L., Chan, L. S., Lam, K. C., & Chan, W. K. (2003). Heavy metal contents and magnetic properties of playground dust in Hong Kong. Environmental Monitoring and Assessment, 89, 221–232.CrossRefGoogle Scholar
  22. Olofsson, B., Jernberg, H., & Rosenqvist, A. (2006). Tracing leachates at waste sites using geophysical and geochemical modelling. Environmental Geology, 49, 720–732.CrossRefGoogle Scholar
  23. Otero, N., Vitoria, L., Soler, A., & Canals, A. (2005). Fertiliser characterisation: Major, trace and rare earth elements. Applied Geochemistry, 20, 1473–1488.CrossRefGoogle Scholar
  24. Petrovsky, E., Kapicka, A., Jordanova, N., & Boruvka, L. (2001). Magnetic properties of alluvial soils contaminated with lead, zinc and cadmium. Journal of Applied Geophysics, 48, 127–136.CrossRefGoogle Scholar
  25. Schibler, L., Boyko, T., Ferdyn, M., Gajda, B., Holl, S., Jordanova, N., et al. (2002). Topsoil magnetic susceptibility mapping: Data reproducibility and compatibility, measurement strategy. Studia Geophysica et Geodetica, 46, 43–57.CrossRefGoogle Scholar
  26. Schmidt, A., Richard, Y., Matt, H., & Ashmore, M. (2005). Magnetic susceptibility as proxy for heavy metal pollution: A site study. Journal of Geochemical Exploration, 85, 109–117.CrossRefGoogle Scholar
  27. Shi, R., & Cioppa, M. T. (2006). Magnetic survey of topsoils in Windsor–Essex County, Canada. Journal of Applied Geophysics, 60, 201–212.CrossRefGoogle Scholar
  28. Worm, H. U. (1998). On the superparamagnetic–stable single domain transition from magnetite, and frequency dependence of susceptibility. Geophysical Journal International, 133, 201–206.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Mariagrazia D’Emilio
    • 1
    • 2
  • Rosa Caggiano
    • 1
  • Rosa Coppola
    • 1
  • Maria Macchiato
    • 2
    • 3
  • Maria Ragosta
    • 4
  1. 1.Istituto di Metodologie per l’Analisi Ambientale/CNRPotenzaItaly
  2. 2.CNISM Consorzio Nazionale Interuniversitario per le Scienze Fisiche della MateriaComplesso Universitario di Monte Sant’AngeloNaplesItaly
  3. 3.Dipartimento di Scienze FisicheUniversità di Napoli “Federico II”NaplesItaly
  4. 4.Dipartimento di Ingegneria e Fisica dell’AmbienteUniversità della Basilicata V.le dell’Ateneo LucanoPotenzaItaly

Personalised recommendations