Advertisement

Environmental Monitoring and Assessment

, Volume 168, Issue 1–4, pp 305–314 | Cite as

Bacteria with dual resistance to elevated concentrations of heavy metals and antibiotics in Nigerian contaminated systems

  • Ganiyu O. Oyetibo
  • Matthew O. Ilori
  • Sunday Adekunle Adebusoye
  • Oluwafemi S. Obayori
  • Olukayode O. Amund
Article

Abstract

Samples of soil, water, and sediments from industrial estates in Lagos were collected and analyzed for heavy metals and physicochemical composition. Bacteria that are resistant to elevated concentrations of metals (Cd2 + , Co2 + , Ni2 + , Cr6 + , and Hg2 + ) were isolated from the samples, and they were further screened for antibiotic sensitivity. The minimum tolerance concentrations (MTCs) of the isolates with dual resistance to the metals were determined. The physicochemistry of all the samples indicated were heavily polluted. Twenty-two of the 270 bacterial strains isolated showed dual resistances to antibiotics and heavy metals. The MTCs of isolates to the metals were 14 mM for Cd2 + , 15 mM for Co2 +  and Ni2 + , 17 mM for Cr6 + , and 10 mM for Hg2 + . Five strains (Pseudomonas aeruginosa, Actinomyces turicensis, Acinetobacter junni, Nocardia sp., and Micrococcus sp.) resisted all the 18 antibiotics tested. Whereas Rhodococcus sp. and Micrococcus sp. resisted 15 mM Ni2 + , P. aeruginosa resisted 10 mM Co2 + . To our knowledge, there has not been any report of bacterial strains resisting such high doses of metals coupled with wide range of antibiotics. Therefore, dual expressions of antibiotics and heavy-metal resistance make the isolates, potential seeds for decommissioning of sites polluted with industrial effluents rich in heavy metals, since the bacteria will be able to withstand in situ antibiosis that may prevail in such ecosystems.

Keywords

Antibiotics Biotransformation Heavy metal Industrial effluent Resistance 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akpan, E. R., Ekpe, U. J., & Ibok, U. J. (2002). Heavy metal trends in the Calabar River, Nigeria. Environmental Geology, 42, 47–51.CrossRefGoogle Scholar
  2. Alonso, A., Sanchez, P., & Martinez, J. L. (2000). Stenotrophomonas maltophilia D457R contains a cluster of genes from gram-positive bacteria involved in antibiotic and heavy-metal resistance. Antimicrobial Agents and Chemotherapy, 44, 1778–1782.CrossRefGoogle Scholar
  3. AOAC (1990). Official methods of analysis. Washington DC: Association of Official Analytical Chemists.Google Scholar
  4. Aremu, D. A., Olawunji, J. F., Meshitsuka, S., Sridhar, M. K., & Olawunde, P. A. (2002). Heavy metal analysis of ground water from Warri, Nigeria. International Journal of Environmental Health Research, 12(3), 261–267.CrossRefGoogle Scholar
  5. Avery, S. V. (1995). Cesium accumulation by microorganisms: Uptake mechanisms, cation competition, compactmentalisation and toxicity. Journal of Industrial Microbiology, 14, 76–84.CrossRefGoogle Scholar
  6. Ben Said, O., Goñi-Urriza, M. S., El Bour, M., Dellali, M., Aissa, P., & Duran, R. (2007). Characterization of aerobic polycyclic aromatic hydrocarbon-degrading bacteria from Bizerte lagoon sediments, Tunisia. Journal of Applied Microbiology, 104, 987–997.CrossRefGoogle Scholar
  7. Calomiris, J. J., Armstrong, J. L., & Seidler, R. J. (1984). Association of metal tolerance with multiple antibiotic resistance of bacteria isolated from drinking water. Applied and Environmental Microbiology, 47(6), 1238–1242.Google Scholar
  8. Clausen, C. A. (2000). Isolating metal-tolerant bacteria capable of removing copper, chromium, and arsenic from treated wood. Waste Management and Research, 18, 264–268.Google Scholar
  9. Cowan, S. T., & Steel, K. J. (1994). Manual for the Identification of Medical Bacteria. Cambridge: Cambridge University Press.Google Scholar
  10. De Vicente, A., Aviles, M., Codina, J. C., Borrego, J. J., & Romero, P. (1990). Resistance to antibiotics and heavy metals of Pseudomonas aeruginosa isolated from natural waters. Journal of Applied Bacteriology, 68, 625–632.Google Scholar
  11. Dressler, C., Kues, U., Nies, D. H., & Friedrich, B. (1991). Determinants encoding resistance to several heavy metals in newly isolated copper-resistant bacteria. Applied and Environmental Microbiology, 57, 3079–3085.Google Scholar
  12. Eaton, A. D., Clesceri, L. S., & Greenberg, A. E. (1995). Standard methods for the examination of water and wastewater (19th Ed.). Baltimore: United Books.Google Scholar
  13. Fakayode, S., & Onianwa, P. (2002). Heavy metal contamination of soil, and bioaccumulation in Guinea grass (Panicum maximum) around Ikeja Industrial Estate, Lagos, Nigeria. Environmental Geology, 43, 145–150.CrossRefGoogle Scholar
  14. Gadd, G. M., & White, C. (1993). Microbial treatment of metal pollution—a working biotechnology? Trends in Biotechnology, 11(8), 353–359.CrossRefGoogle Scholar
  15. Groves, D. J., Short, H., Thewaini, A. J., & Young, F. E. (1975). Epidemiology of antibiotic and heavy-metal resistance in bacteria: Resistance patterns in Staphylococci isolated from populations in Iraq exposed and not exposed to heavy metals or antibiotics. Antimicrobial Agents and Chemotherapy, 7, 622–628.Google Scholar
  16. Holt, J. G., Krieg, N. R., Sneath, P. H. A., Stanley, J. T., & William, S. T. (1994). Bergey’s manual of determinative bacteriology. Baltimore: William and Wilkins.Google Scholar
  17. Howlett, N. G., & Avery, S. V. (1997). Induction of lipid peroxidation during heavy metal stress in Saccharomyces cerevisiae and influence of plasma membrane fatty acid unsaturation. Applied and Environmental Microbiology, 63, 2971–2976.Google Scholar
  18. Kimiran-Erdem, A., Arslan, E. O., Yurudu, N. O. S., Zeybek, Z., Dogruoz, N., & Cotuk, A. (2007). Isolation and identification of enterococci from seawater samples: Assessment of their resistance to antibiotics and heavy metals. Environmental Monitoring and Assessment, 125, 219–228.CrossRefGoogle Scholar
  19. Lovley, D. R. (1994). Microbial reduction of iron, manganese and other metals. Advanced Agronomy, 54, 175–231.CrossRefGoogle Scholar
  20. Nakahara, H., Ishikawa, T., Sarai, Y., Kondo, I., Kuzuke, H., & Silver, S. (1977). Linkage of mercury, cadmium and arsenate and drug resistance in clinical isolates of Pseudomonas aeruginosa. Applied and Environmental Microbiology, 33, 975–976.Google Scholar
  21. Nakatsu, C. H., Carmosini, N., Baldwin, B., Beasley, F., Kourtev, P., & Konopka, A. (2005). Soil microbial community responses to additions of organic carbon substrates and heavy metals (Pb and Cr). Applied and Environmental Microbiology, 71(12), 7679–7689.CrossRefGoogle Scholar
  22. Nascimento, A. M. A., & Chartone-Souza, E. (2003). Operon mer: bacterial resistance to mercury and potential for bioremediation of contaminated environments. Genetics and Molecular Research, 2(1), 92–101.Google Scholar
  23. Nelson, D. W., & Sommers, L. E. (1982). Total carbon, organic carbon, and organic matter. In A. L. Page, R. H. Miller, D. R. Keeney (Eds.), Methods of soil analysis, Part 2, chemical and microbiological properties. 2nd ed. Agronomy Monogram 9 (pp. 539–580). Madison: American Society of Agronomy and Soil Science of America.Google Scholar
  24. Nies, D. H. (1999). Microbial heavy-metal resistance. Applied Microbiology and Biotechnology, 51(6), 730–750.CrossRefGoogle Scholar
  25. Odokuma, L. O., & Okpokwasili, G. C. (1993). Seasonal ecology of hydrocarbon-utilizing microbes in the surface waters of a river. Environmental Monitoring and Assessment, 27(3), 175–191.CrossRefGoogle Scholar
  26. Olajire, A. A. (1998). A survey of heavy metal deposition in Nigeria using the moss monitoring method. Environment International, 8, 951–958.CrossRefGoogle Scholar
  27. Otchere, F. A. (2003). Heavy metals concentrations and burden in the bivalves (Anadara (Senilia) senilis, Crassostrea tulipa and Perna perna) from lagoons in Ghana: model to describe mechanism of accumulation/excretion. African Journal of Biotechnology, 2, 280–287.Google Scholar
  28. Osuji, L. C., & Onojake, C. M. (2004). Trace heavy metals associated with crude oil: A case study of Ebocha-8 oil-spill-polluted site in Niger Delta, Nigeria. Chemistry and Biodiversity, 1, 1708–1715.CrossRefGoogle Scholar
  29. Oyeyiola, A. O., Olayinka, K. O., & Alo, B. I. (2006). Correlation studies of heavy metals concentration with sediment properties of some rivers surrounding the Lagos Lagoon. Nigerian Journal of Health and Biomedical Sciences, 5, 118–122.Google Scholar
  30. Pazirandeh, M., Wells, B., & Ryan, R. L. (1998). Development of bacterium-based heavy metal biosorbents: Enhanced uptake of cadmium and mercury by Escherichia coli expressing a metal binding motif. Applied and Environmental Microbiology, 64, 4068–4072.Google Scholar
  31. Raja, C. E., Anbazhagan, K., & Selva, G. S. (2006). Isolation and characterization of a metal-resistant Pseudomonas aeruginosa strain. World Journal of Microbiology and Biotechnology, 22, 577–585.CrossRefGoogle Scholar
  32. Ravel, J., Schrempf, H., & Hill, R. T. (1998). Mercury resistance is encoded by transferrable giant linear plasmids in two Chesapeake Bay Streptomyces strains. Applied and Environmental Microbiology, 64, 3383–3388.Google Scholar
  33. Rittle, K. A., Drever, J. L., & Colberg, P. J. S. (1995). Precipitation of arsenic during bacterial sulfate reduction. Geomicrobiologie Journal, 13, 1–11.CrossRefGoogle Scholar
  34. Said, W. A., & Lewis, D. L. (1991). Quantitative assessment of the effects of metals on microbial degradation of organic chemicals. Applied and Environmental Microbiology, 57, 1498–1503.Google Scholar
  35. Sandrin, T. R., Chech, A. M., & Maier, R. M. (2000). A rhamnolipid biosurfactant reduces cadmium toxicity during biodegradation of naphthalene. Applied and Environmental Microbiology, 66, 4585–4588.CrossRefGoogle Scholar
  36. Sant’ana, Y. X., Chartone-Souza, E., & Ferreira, M. D. (1989). Drug resistance and colicinogeny of Salmonella typhimurium strains isolated from sewagecontaminated surface water and humans in Belo Horizonte. Revista de Microbiologia, 20, 41–49.Google Scholar
  37. Sarmah, A. K., Meyer, M. T., & Boxall, A. B. A. (2006). A global perspective on the use, sales, exposure pathways, occurrence, fate and effects of veterinaryantibiotics (VAs) in the environment. Chemosphere, 65, 725–759.CrossRefGoogle Scholar
  38. Silva, A. A. L. E., & Hofer, E. (1993). Resistance to antibiotics and heavy metals in Escherichia coli from marine fish. Environmental Toxicology and Water Quality, 8, 1–11.CrossRefGoogle Scholar
  39. Spain, A. (2003). Implications of microbial heavy metal tolerance in the environment. Reviews in Undergraduate Research, 2, 1–6.Google Scholar
  40. Sprocati, T., Ronchi, P., Raimond, A., Francolini, M., & Borgese, N. (2006). Dynamic and reversible restructuring of the ER induced by PDMP in cultured. Journal of Cell Science, 119, 3249–3260.CrossRefGoogle Scholar
  41. Stephen, J. R., Chang, Y., Macnaughton, S. J., Kowalchuk, G. A., Leung, K. T., Flemming, C. A., et al. (1999). Effect of toxic metals on indigenous soil β-subgroup Proteobacterium ammonia oxidizer community structure and protection against toxicity by inoculated metal-resistant bacteria. Applied and Environmental Microbiology, 65, 95–101.Google Scholar
  42. Turpeinen, R., Kairesalo, T., & Haggblom, M. M. (2004). Microbial community structure and activity in arsenic-, chromium- and copper-contaminated soils. FEMS Microbiology Ecology, 47, 39–50.CrossRefGoogle Scholar
  43. Valentine, N. B., Bolton, H. Jr., Kingsley, M. T., Drake, G. R., Balkwill, D. L., & Blymale, A. E. (1996). Biosorption of cadmium, cobalt, nickel, and strontium by a Bacillus simplex strain isolated from the vadose zone. Journal of Industrial Microbiology, 16, 189–196.CrossRefGoogle Scholar
  44. Wong, Y., & Yu, J. (1999). Laccase-catalysed decolorization of synthetic dyes. Water Research, 33(16), 3512–3520.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Ganiyu O. Oyetibo
    • 1
  • Matthew O. Ilori
    • 1
  • Sunday Adekunle Adebusoye
    • 1
  • Oluwafemi S. Obayori
    • 2
  • Olukayode O. Amund
    • 1
  1. 1.Department of Botany and Microbiology, Faculty of ScienceUniversity of LagosAkokaNigeria
  2. 2.Department of MicrobiologyLagos State UniversityOjoNigeria

Personalised recommendations