Environmental Monitoring and Assessment

, Volume 168, Issue 1–4, pp 205–213 | Cite as

Distribution of polycyclic aromatic hydrocarbons in marine sediments and their potential toxic effects

  • Sandro Froehner
  • Marcell Maceno
  • Erissen Cardoso Da Luz
  • Daniele Botelho Souza
  • Karina Scurupa Machado


The presence of polycyclic aromatic hydrocarbons (PAHs) in samples of marine sediments from Paranagua Bay on the southern coast of Brazil was investigated. Paranagua Bay is the location of a major port, one of the busiest in Brazil. The region has a great potential for tourism and port-related industries and activities. Due to its characteristics as a venue for tourism, two major campaigns were planned: one 3 months before the summer (between December and February) and a second after the vacation season. Total concentration of PAHs in sediments ranged from 26.33 to 406.76 ng/g (in both campaigns). The highest values were found in sediments with higher organic carbon content. We found no substantial differences between the two campaigns, and the values are quite similar. Ternary diagrams show that points P5 and P6 were considered polluted, while others were classified as non-polluted. Molecular ratios indicate that the main sources of PAHs are petrogenic and the burning of fossil fuels. Sediment toxicity was assessed by the presence of PAHs in terms of benzo(a)pyrene (BaP) concentration. The toxicity of PAHs mixtures can be characterized more accurately by developing and establishing toxic equivalency factors (TEFs) for PAHs. Considering TEFs, the BaPeq concentrations vary between 0.264 and 5.922 ng/g (considering both campaigns). Thus, two points are above the maximum level recommended (3 ng/g) by the Netherlands sediment quality guidelines. In fact, sites P5 and P6 apparently are exposed to a greater number of pollution sources, thus reflecting the higher concentration of PAHs compounds in sediments.


Marine sediments Toxic equivalency factors Polycyclic aromatic hydrocarbons Estuary 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abas, R. B., Omar, N. Y., Mon, T. C., & Rahman, N. A. (2006). Distributions and health risks of polycyclic aromatic hydrocarbons (PAHs) in atmospheric aerosols of Kuala Lumpur, Malaysia. The Science of the Total Environment, 369(1), 76–81. doi: 10.1016/j.scitotenv.2006.04.032.CrossRefGoogle Scholar
  2. Baird, W. M., Courter, L. A., Jeknic, T. M., Fischer, K., Bildfell, R., Giovanni, J., et al. (2007). Urban dust particulate matter alters PAH-induced carcinogenesis by inhibition by CYP1A1 and CYP1B1. Toxicological Sciences, 95(1), 63–73.Google Scholar
  3. Baumard, P., Budzinski, H., Michona, Q., Garrigues, P., Burgeot, T., & Bellocq, J. (1998). Origin and bioavailability of PAHs in the Mediterranean Sea from mussel and sediment records. Estuarine, Coastal and Shelf Science, 47(1), 77–90. doi: 10.1006/ecss.1998.0337.CrossRefGoogle Scholar
  4. Budzinski, H., Jones, I., Bellocq, J., Pièrrard, C., & Garrigues, P. (1997). Evaluation of sediment contamination by polycyclic aromatic hydrocarbons in the Gyrond estuary. Marine Chemistry, 58(1), 85–97. doi: 10.1016/S0304-4203(97)00028-5.CrossRefGoogle Scholar
  5. Canadian Ministry of Environment—Sediment Guidelines (2008). http://www.ene.gov.on.ca/en/. Accessed Jan 2008.
  6. Caricchia, A. M., Chiavarini, S., & Pezza, M. (1999). Polycyclic aromatic hydrocarbons in the atmospheric particulate matter in the city of Naples, Italy. Atmospheric Environment, 33(23), 3731–3738. doi: 10.1016/S1352-2310(99)00199-5.CrossRefGoogle Scholar
  7. Chen, B., Xuan, X., Zhu, L., Wang, J., Gao, Y., & Yang, K. (2004). Distribution of polycyclic aromatic hydrocarbons in surface waters, sediments and soils of Hangzhou City, China. Water Research, 38(16), 3558–3567. doi: 10.1016/j.watres.2004.05.013.CrossRefGoogle Scholar
  8. Doong, R., & Lin, Y. (2004). Characterization and distribution of polycyclic aromatic hydrocarbon contaminations in surface sediment and water from Gao-Ping River, Taiwan. Water Research, 38(7), 1733–1744. doi: 10.1016/j.watres.2003.12.042.CrossRefGoogle Scholar
  9. Dorn, P. B., Saterbak, A., Toy, R. J., McMain, B. J., & Williams, P. (2000). Ecotoxicological and analytical assessment of effects of bioremediation on hydrocarbon-containing soils. Environmental Toxicology and Chemistry, 19(11), 2643–2652. doi: 10.1897/1551-5028(2000)019<2643:EAAAOE>2.0.CO;2.CrossRefGoogle Scholar
  10. Froehner, S., Da Luz, E. C., & Maceno, M. (2008). Enhanced biodegradation of naphthalene and anthracene by modified vermiculite mixed with soil. Water, Air, and Soil Pollution (in press). doi: 10.1007/s11270-008-9967-6.Google Scholar
  11. Froehner, S., & Maceno, M. (2009). Assessment of bioaccumulation of bifenyls in the trophic chain of a coastal area of Parana, Brazil. Environmental Monitoring and Assessment (in press). doi: 10.1007/S10661-009-088y Google Scholar
  12. Froehner, S., & Martins, R. F. (2008). Assessment of fate and bioaccumulation of benzo(a)pyrene by computer modeling. Quimica Nova, 31(5), 1089–1093. doi: 10.1590/S0100-40422008000500028.Google Scholar
  13. Froehner, S., Zeni, J., Da Luz, E. C., & Maceno, M. (2009). Characterization of granulometric and chemical composition of sediments of Barigüi river samples and their capacity to retain polycyclic aromatic hydrocarbons. Water Air Soil Pollution (in press). doi: 10.1007/s11270-009-0020-1.Google Scholar
  14. IARC (1991). Monographs on the evaluation of carcinogenic risk of chemicals to humans (Vol. 53, 440 pp.). Lyon, France: International Agency for Research on Cancer.Google Scholar
  15. Kim, Y. J., Park, S. S., & Kang, C. H. (2002). Atmospheric polycyclic aromatic hydrocarbons in Seoul, Korea. Atmospheric Environment, 36(17), 2917–2924. doi: 10.1016/S1352-2310(02)00206-6.CrossRefGoogle Scholar
  16. Lana, P. C., Marone, E., Lopes, R. M., & Machado, E. C. (2000). The subtropical estuarine complex of Paranagua Bay, Brazil. In Ecological studies, coastal marine ecosystems of Latin America (Vol. 144, pp. 131–145). Berlin: Springer Verlag.Google Scholar
  17. Lichtfouse, E., Bardoux, G., Mariotti, A., Balesdent, J., Ballentine, D. C., & Macko, A. (1997). Molecular, 13C and 14C evidence for the allochthonous and ancient origin of C16–C18 n-alkanes in modern soils. Geochimica et Cosmochimica Acta, 61(9), 1891–1898. doi: 10.1016/S0016-7037(97)00021-5.CrossRefGoogle Scholar
  18. Lichtfouse, E., & Budzinski, H. (1995). 13C analysis of molecular organic substances, a novel breakthrough in analytical sciences. Analysis, 23(3), 364–369.Google Scholar
  19. Long, E. R., & Morgan, L. G. (1990). The potential for biological effects of sediment-sorbed contaminants tested in the National Status and Trends Program: Seattle, Wash., National Oceanic and Atmospheric Administration. NOAA Technical Memorandum NOS OMA, 62, 175.Google Scholar
  20. Macías-Zamora, J. V., Mendoza-Vega, E., & Villaescusa-Celaya, J. A. (2002). PAHs composition of surface marine sediments: A comparison to potential local sources in Todos Santos Bay, B. C., Mexico. Chemosphere, 46(3), 459–468. doi: 10.1016/S0045-6535(01)00069-8.CrossRefGoogle Scholar
  21. Maher, W. A., & Aislabie, J. (1992). Polycyclic aromatic hydrocarbons in nearshore marine sediments of Australia. The Science of the Total Environment, 112(2–3), 143–164. doi: 10.1016/0048-9697(92)90184-T.Google Scholar
  22. Montgomery, M. T., Osburn, O. L., Furukawa, Y., & Gieskes, J. M. (2008). Increased capacity for polycyclic aromatic hydrocarbon mineralization in bioirrigated coastal marine sediments. Bioremediation Journal, 12(2), 98–110. doi: 10.1080/10889860802060469.CrossRefGoogle Scholar
  23. Nisbet, C., & LaGoy, P. (1992). Toxic equivalency factors (TEFs) for polycyclic aromatic hydrocarbons (PAHs). Regulatory Toxicology and Pharmacology, 16(3), 290–300. doi: 10.1016/0273-2300(92)90009-X.CrossRefGoogle Scholar
  24. Sirece, M. A., Marty, J. C., Saliot, A., Aparicio, X., Grimalt, J., & Albaiges, J. (1987). Aliphatic and aromatic hydrocarbons in different sized aerosols over the Mediterranean Sea: Occurrence and origin. Atmospheric Environment, 21(10), 2247–2259. doi: 10.1016/0004-6981(87)90356-8.CrossRefGoogle Scholar
  25. Soclo, H. H., Garrigues, P. H., & Ewald, M. (2000). Origin of polycyclic aromatic hydrocarbons (PAHs) in coastal marine sediments: Case studies in Cotonou (Benin) and Aquitaine (France) areas. Marine Pollution Bulletin, 40(5), 387–396. doi: 10.1016/S0025-326X(99)00200-3.CrossRefGoogle Scholar
  26. Witt, G., & Trost, E. (1999). Polycyclic aromatic hydrocarbons (PAHs) in sediments of the Baltic Sea and of the German coastal water. Chemosphere, 38(7), 1603–1614. doi: 10.1016/S0045-6535(98)00387-7.CrossRefGoogle Scholar
  27. van der Gaag, M. A., Stortelder, P. B. M., van der Kooij, L. A., & Bruggeman, W. A. (1991). Setting environmental quality criteria for water and sediment in the Netherlands. A pragmatic ecotoxicological approach. European Water Management, 1(3), 13–20.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Sandro Froehner
    • 1
  • Marcell Maceno
    • 1
  • Erissen Cardoso Da Luz
    • 1
  • Daniele Botelho Souza
    • 1
  • Karina Scurupa Machado
    • 1
  1. 1.Department of Environmental EngineeringFederal University of ParanaCuritibaBrazil

Personalised recommendations