Environmental Monitoring and Assessment

, Volume 168, Issue 1–4, pp 103–114 | Cite as

Efficacy of electrical resistivity and induced polarization methods for revealing fluoride contaminated groundwater in granite terrain

  • Nepal C. Mondal
  • Ananda V. Rao
  • Vijay P. Singh


The accumulation of fluoride (F) in groundwater is a common phenomenon in India and worldwide. Its location can be identified through a direct hydrochemical analysis, which was carried out in Kurmapalli watershed (located 60 km SE of Hyderabad city), Nalgonda district, Andhra Pradesh, India affected by F contamination. The results of the hydrochemical analysis showed that F varied from 0.71 to 19.01 mg/l and its concentration exceeded the permissible limit (i.e., 1.5 mg/l) in 78% of the total 32 samples analyzed. The highest F value (19.01 mg/l) was found near Madnapur village, which is located in the central part of the watershed. Resistivity and induced polarization (IP) surveys were also carried out to reveal the zones where elevated F-contaminated groundwater exists. The objective of this paper was to highlight the utility of resistivity and IP surveys, using hydrochemical constituents as constraint, for the successful delineation of such contaminated/polluted groundwater zones in the granite area.


Groundwater Fluoride contamination Electrical resistivity Induced polarization Granite Nalgonda District India 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andezhath, S. K., Susheela, A. K. & Ghosh, G (1999). Fluorosis management in India: The impact due to networking between health and rural drinking water supply agencies. IAHS-AISH Publication, 260, 159–165.Google Scholar
  2. APHA (1985). Standard methods for the examination of water and wastewater (16th Ed., p. 100). Washington: American Public Health Association.Google Scholar
  3. Aristodemou, E., & Betts, A. T. (2000). DC resistivity and induced polarisation investigations at a waste disposal site and its environments. Journal of Applied Geophysics, 44(2–3), 275–302.CrossRefGoogle Scholar
  4. Bodmer, R., Ward, S. H., & Morrison, H. F. (1968). On induced electrical polarization and groundwater. Geophysics, 33(5), 805–821.CrossRefGoogle Scholar
  5. Brown, E., Skougstad, M. W., & Fishmen, M. J. (1983). Method for collection and analyzing of water samples for dissolved mineral and gases (p. 75). Washington, DC: US Government Printing Office.Google Scholar
  6. Cartwright, K., & McComas, M. R. (1968). Geophysical surveys in the vicinity of sanitary landfills in northeastern Illinois. Groundwater, 6(5), 23–30.Google Scholar
  7. Cartwright, K., & Sherman, F. (1972). Electrical earth resistivity surveying in landfill investigations. In 10th annual engineering and soils engineering symposium (pp. 77–92). Moscow, Idaho.Google Scholar
  8. Dhar, R. L., Krishnamurthy, N. S., & Prakash, B. A. (2000). Groundwater investigations in parts of Alwar district, Rajasthan. Journal of the Geological Society of India, 56(1), 151–160.Google Scholar
  9. Douglas, Y., & Oldenburg, W. (1996). DC resistivity and IP methods in acid mine drainage problems: Results from the Copper Cliff mine tailings impoundments. Journal of Applied Geophysics, 34(3), 187–198.CrossRefGoogle Scholar
  10. Ebraheem, A. M., Hamburger, M. W., Bayless, E. R., & Krothe, N. C. (1990). A study of acid mine drainage using earth resistivity measurements. Ground Water, 28(3), 361–386.CrossRefGoogle Scholar
  11. Edet, A. E., & Okereke, C. S. (2001). A regional study of saltwater intrusion in southeastern Nigeria based on the analysis of geoelectrical and hydrochemical data. Environmental Geology, 40(10), 1278–1289.CrossRefGoogle Scholar
  12. Garg, V. K., Dahiya, S., Chaudhary, A., & Shikha, D. (1998). Fluoride distribution in groundwaters of Jind district, Haryana, India. Ecology Environment & Conservation, 41(1–2), 19–23.Google Scholar
  13. Ghosh, P. C., & Bandyopadhyay, D. (1980). Hydrochemistry of fluoride occurrence in ground water from Barkagawan area, Hazaribag district, Bihar. In Proceedings of the 3rd Indian geological congress (pp. 445–460). Poona.Google Scholar
  14. Gnanasundar, D., & Elango, L. (1999). Groundwater quality assessment of a coastal aquifer using geoelectrical techniques. Journal of Environmental Hydrology, 7(2), 1–8.Google Scholar
  15. Gowd, S. S. (2004). Electrical resistivity surveys to delineate groundwater potential aquifers in Peddavanka watershed, Anantapur district, Andhra Pradesh, India. Environmental Geology, 46(1), 118–131.Google Scholar
  16. Greenberg, E., Joseph, J., & Connors, D. J. (1998). Standard methods for the examination of water and wastewater (20th Ed.). Washington: American Public Health Association.Google Scholar
  17. Hamzah, U., Yaacup, R., Samsudin, A. R., & Ayub, M. S. (2006). Electrical imaging of the groundwater aquifer at Banting, Selangor, Malayasia. Environmental Geology, 49(8), 1156–1162.CrossRefGoogle Scholar
  18. Handa, B. K. (1975). Geochemistry and genesis of fluoride containing groundwater in India. Groundwater, 13(3), 275–281.Google Scholar
  19. Jacks, G., Bhattacharya, P., Chaudhary, V., & Singh, K. P. (2005). Controls on the genesis of some high-fluoride groundwaters in India. Applied Geochemistry, 20(2), 221–228.CrossRefGoogle Scholar
  20. Karanath, K. R. (1986). Exploration program identifies large groundwater potential in drought prone areas of Karnataka (p. 8). Bhu Jal, News.Google Scholar
  21. Kelly, W. E. (1976). Geoelectric sounding for delineating groundwater contamination. Groundwater, 14(1), 6–10.Google Scholar
  22. Madhnure, P., Sirsikar, D. Y., Tiwari, T. N., Ranjan, B., & Male, D. B. (2007). Occurrence of fluoride in the groundwaters of Pandharkawada area, Yavatmal district, Maharashtra, India. Current Science, 92(5), 675–679.Google Scholar
  23. Majumdar, R. K., Ghosh, A., & Das, D. (2006). Geoelectrical and geochemical studies for hydrological characterization of southern part of Sagar Island, South 24 Parganas, West Bengal, India. Journal of Geophysics, XXVII(4), 109–118.Google Scholar
  24. Misra, S. K. (1997). Water quality monitoring and surveillance in rural areas of Rajasthan. Public Health Engineering Department, Government of Rajasthan, India.Google Scholar
  25. Mondal, N. C., Das, S. N., & Singh, V. S. (2008). Integrated approach for identification of groundwater potential zones in Seethanagaram Mandal of Vizianagaram District, Andhra Pradesh, India. Journal of Earth System Sciences, 117(2), 133–144.CrossRefGoogle Scholar
  26. Mondal, N. C., Singh, V. S., Sarwade, D. V., & Nandakumar, M. V. (2009a). Appraisal of groundwater resources in an island condition. Journal of Earth System Sciences, 188(3), 217–229.CrossRefGoogle Scholar
  27. Mondal, N. C., Prasad, R. K., Saxena, V. K., Singh, Y., & Singh, V. S. (2009b). Appraisal of highly fluoride zones in groundwater of Kurmapalli watershed, Nalgonda district, Andhra Pradesh (India). Environmental Earth Sciences. doi: 10.1007/s12665-009-0004-x.Google Scholar
  28. Ogilvy, A. A., & Kuzmina, E. N. (1972). Hydrogeologic and engineering–geologic possibilities for employing method of induced potentials. Geophysics, 37(5), 839–861CrossRefGoogle Scholar
  29. Olayinka, A. I., Abmbola, A. F., Isibor, R. A., & Rafiu, A. R. (1998). A geoelectrical–hydrogeochemcial investigation of shallow groundwater occurrence in Ibadan, Southwestern Nigeria. Environmental Geology, 37(1–2), 31–39.Google Scholar
  30. Parikh, H. N., Ayachit, V. V., & Chakravarthy, N. C. V. N. (1990). Geoelectrical resistivity surveys for groundwater prospecting in granitic area of Idar and Godhra blocks of Gujarat state: An analytical study. Journal of the Association of Exploration Geophysicists, 11(1), 33–44.Google Scholar
  31. Perl’man, A. I. (1977). Geochemistry of elements in supergene zone (pp. 176–188). Jerusalem: Keter.Google Scholar
  32. Pillai, K. S., & Stanley, V. A. (2002). Implications of fluoride—An endless uncertainty. Journal of Environmental Biology, 23(1), 81–87.Google Scholar
  33. Prasad, R. K., Mondal, N. C., & Singh, V. S. (2008). Evaluation of groundwater resource potential using GIS in Kurmapalli of Andhra Pradesh. Journal of Geological Society of India, 71(5), 661–669.Google Scholar
  34. Rajani, K. V. N., Swamy, M. V., & Rao, V. K. (2006). Estimation of groundwater resources—A case study of Kurmapalli watershed in Nalgonda and Ranga Reddy districts of Andhra Pradesh. In B. V. Rao, G. J. Das, S. Sarala, & M. V. S. S. Girdhar (Eds.), Proceeding: 2nd international conference on hydrology and watershed management (Vol. I, pp. 118–126), 5–8th December, BS Publications, Hyderabad-95.Google Scholar
  35. Ramesam, V., & Rajagopalan, K. (1985). Fluoride ingestion into the natural waters of hard-rock areas, Peninsular India. Journal of the Geological Society of India, 26(2), 125–132.Google Scholar
  36. Rao, N. V. R., Rao, N., Rao, K. S. P., & Schuiling, R. D. (1993). Fluorine distribution in waters of Nalgonda District, Andhra Pradesh, India. Environmental Geology, 21(1–2), 89–95.Google Scholar
  37. Sabnavis, M., & Patangay, S. N. (1998). Principles and applications of groundwater geophysics (p. 419). Hyderabad: Association of Exploration Geophysicist.Google Scholar
  38. Saxena, V. K., & Ahmed, S. (2001). Dissolution of fluoride in groundwater: A water–rock interaction study. Environmental Geology, 40(9), 1084–1087.CrossRefGoogle Scholar
  39. Saxena, V. K., & Ahmed, S. (2003). Inferring the chemical parameters for the dissolution of fluoride in groundwater. Environmental Geology, 43(6), 731–736.Google Scholar
  40. Saxena, V. K., Mondal, N. C., Singh, V. S., & Kumar, D. (2005). Identification of water-bearing fractures in hard rock terrain by electrical conductivity logs, India. Environmental Geology, 48(8), 1084–1095.CrossRefGoogle Scholar
  41. Singh, V. S., Saxena, V. K., Mondal, N. C., Sarma, M. R. K., Nandakumar, M. V., & Prasad, R. K. (2008). Dynamic groundwater potential of Kurmapalli watershed, Nalgonda district, Andhra Pradesh (p. 110). Technical report no. NGRI-2008-GW-631.Google Scholar
  42. Sreedevi, P. D., Srinivasulu, S., & Raju, K. K. (2001). Delineation of groundwater potential zones and electrical resistivity studies for groundwater exploration. Environmental Geology, 40(10), 1252–1264.CrossRefGoogle Scholar
  43. Stollar, R. L., & Roux, P. (1975). Earth resistivity survey method for defining ground water contamination. Ground Water, 13(2), 145–150.CrossRefGoogle Scholar
  44. Sumi, F. (1965). Prospecting for non-metallic mineral by induced polarization. Geophysical Prospecting, 13(4), 603–616.CrossRefGoogle Scholar
  45. Tamata, S. R. (1994). Possible mechanism for concentration of fluoride in groundwater (pp. 5–11). Bhu-jal News.Google Scholar
  46. Todd, D. K. (1980). Groundwater hydrogeology (2nd Ed., p. 535). New York: Wiley.Google Scholar
  47. Urish, D. W. (1983). The practical application of surface electrical resistivity to detection of groundwater pollution. Groundwater, 21(2), 144–152.Google Scholar
  48. Vacquier, V., Holmes, C. R., Kintzinger, P. K., & Lavergne, N. E. M. (1957). Prospecting for ground water by induced electrical polarization. Geophysics, 22(3), 660–687.CrossRefGoogle Scholar
  49. Varma, R. A., & Ramachandran, K. K. (1996). Resistivity survey for describing the fresh water lenses of Agatti Atoll, Lakshadweep, India. Journal of the Association of Exploration Geophysicists, 17(1), 11–16.Google Scholar
  50. Warner, D. L. (1969). Preliminary field studies using earth resistivity measurements for delineating zones of contaminated groundwater. Groundwater, 7(1), 9–16.Google Scholar
  51. WHO (1984). Guideline of drinking quality (p. 335). Washington: World Health Organization.Google Scholar
  52. Yadav, G. S., & Singh, S. K. (2007). Integrated resistivity surveys for delineation of fractures for groundwater exploration in hard rock areas. Journal of Applied Geophysics, 62(3), 301–312.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Nepal C. Mondal
    • 1
    • 2
  • Ananda V. Rao
    • 1
  • Vijay P. Singh
    • 2
  1. 1.National Geophysical Research Institute (Council of Scientific & Industrial Research)HyderabadIndia
  2. 2.Department of Biological & Agricultural EngineeringTexas A & M UniversityCollege StationUSA

Personalised recommendations