Advertisement

Environmental Monitoring and Assessment

, Volume 167, Issue 1–4, pp 289–295 | Cite as

Water chemistry influences the toxicity of silver to the green-lipped mussel Perna viridis

  • Kannappan Vijayavel
Article

Abstract

The study determined the influence and relative importance of water chemistry parameters (pH, alkalinity, hardness) on the acute toxicity of silver to the green mussel Perna viridis. A preliminary bioassay revealed that 4 mg L − 1 of silver caused 50% mortality (LC50) in 96 h for mussels placed in seawater with pH 8.5, hardness 1,872 mg L − 1, and alkalinity 172 mg L − 1. Mortality of mussels increased with decreasing pH and increasing hardness and alkalinity variables. In contrast the mortality decreased with increasing pH and decreasing hardness and alkalinity values. The water chemistry also affected the concentration of sliver in experimental seawater and bioaccumulation of silver in mussels. The results revealed that the chemical properties of seawater must be considered while conducting toxicity tests with metals like silver. The possible explanations for the influence of water chemistry on silver toxicity to P. viridis are discussed.

Keywords

Water chemistry Toxicity pH Silver Perna viridis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. APHA, AWWA, WEF (1998). Standard methods for the examination of water and wastewater (20th ed.). Washington DC: American Public Health Association, American Water Works Association and Water Environment Federation.Google Scholar
  2. APHA (1992). Bioassay Methods for aquatic organisms. In Standard method for the examination of water and wastewater (18th ed., pp. 685–743). Washington, DC: American Public Health Associations, American Water Works Association and Water Pollution Federation.Google Scholar
  3. Bianchini, A., & Wood, C. M. (2003). Mechanism of acute silver toxicity in Daphnia magna. Environmental Toxicology and Chemistry, 22(6), 1361–1367.Google Scholar
  4. Bianchini, A., Playle, R. C., Wood, C. M., & Walsh, P. J. (2005). Mechanism of acute silver toxicity in marine invertebrates. Aquatic Toxicology, 72, 67–82.CrossRefGoogle Scholar
  5. Bury, N. R., McGeer, J. C., & Wood, C. M. (1999). Effects of altering freshwater chemistry on physiological responses of rainbow trout to silver exposure. Environmental Toxicology and Chemistry, 18(1), 49–55.CrossRefGoogle Scholar
  6. Bury, N. R., Shaw, J., Glover, C., & Hogstrand, C. (2002). Derivation of a toxicity-based model to predict how water chemistry influences silver toxicity to invertebrates. Comparative Biochemistry and Physiology. C Toxicology & Pharmacology, 133(1–2), 259–270.CrossRefGoogle Scholar
  7. Campbell, P. G. (1995). Interactions between trace metals and aquatic organisms: A critique of the free-ion activity model. In A. Tessier, & D. R. Turner (Eds.), Metal speciation and bioavailability in aquatic systems (pp. 45–102). Chichester: Wiley.Google Scholar
  8. Campbell, P. G., & Stokes, P. M. (1985). Acidification and toxicity of metal to aquatic biota. Canadian Journal of Fisheries and Aquatic Sciences, 42, 2034–2049.Google Scholar
  9. Cogun, H. Y., & Kargın, F. (2004). Effects of pH on the mortality and accumulation of copper in tissues of Oreochromis niloticus. Chemosphere, 55, 277–282.CrossRefGoogle Scholar
  10. Crist, R. H., Martin, J. R., Carr, D., Watson, J. R., Clarke, H. J., & Crist, D. R. (1994). Interaction of metals and protons with algae. Ion exchange vs adsorption models and reassessment of Scatchard plots; ion-exchange rates and equilibria compared with calcium alginate. Environmental Science & Technology, 28, 1859–1866.CrossRefGoogle Scholar
  11. Crist, R. H., Martin, J. R., Guptill, P. W., Eslinger, J. M., & Crist, D. R. (1990). Interaction of metals and protons with algae. Ion exchange in adsorption and metal displacement by protons. Environmental Science & Technology, 24(3), 337–342.CrossRefGoogle Scholar
  12. Finney, D. J. (1971). Probit analysis. 3rd edn. London: Cambridge University Press.Google Scholar
  13. Florence, T. M., Morrison, G. M., & Stauber, J. L. (1992). Determination of trace element speciation and the role of speciation in aquatic toxicity. Science of the Total Environment, 125, 1–13.CrossRefGoogle Scholar
  14. Hoang, T. C., Tomasso, J. R., & Klaine, S. J. (2004). Influence of water quality and age on nickel toxicity to fathead minnows (Pimephales promelas). Environmental Toxicology and Chemistry, 23(1), 86–92.CrossRefGoogle Scholar
  15. Marchi, B., Burlando, B., Moore, M. N., & Viarengo, A. (2004). Mercury and copper induced lysosomal membrane destabilisation depends on Ca2 +  dependent phospholipase A2 activation. Aquatic Toxicology, 66(2), 197–204.CrossRefGoogle Scholar
  16. Peterson, H. G., Healey, F. P., & Wagemann, R. (1984). Metal toxicity to algae: A highly pH- dependent phenomenon. Canadian Journal of Fisheries and Aquatic Sciences, 41, 974–979.CrossRefGoogle Scholar
  17. Plette, A. C. C., Nederlof, M. M., Temminghoff, E. J. M., & Riemsdijk, W. H. V. (1999). Bioavailability of heavy metals in terrestrial and aquatic systems: A quantitative approach. Environmental Toxicology and Chemistry, 18(9), 1882–1890.CrossRefGoogle Scholar
  18. Pyle, G. G., Swanson, S. M., & Lehmkuh, D. M. (2002). The influence of water hardness, pH, and suspended solids on nickel toxicity to larval fathead minnows (Pimephales promelas). Water, Air and Soil Pollution, 133, 215–226.CrossRefGoogle Scholar
  19. Rai, P. K., Mallick, N., & Rai, L. C. (1993). Physiological and biochemical studies on the acid-tolerant Chlorella vulgaris under copper stress. Journal of General and Applied Microbiology, 39, 529–540.CrossRefGoogle Scholar
  20. Schubauer-Berigan, M. K., Dierkes, J. R., Monson, P. D., & Ankley, G. T. (1993). pH-dependent toxicity of Cd, Cu, Ni, Pb and Zn to Ceriodaphnia dubia, Pimephales promelas, Hyalella azteca, and Lumbriculus variegates. Environmental Toxicology and Chemistry, 12, 1261–1266.Google Scholar
  21. Sciera, K. L., Isely, J. J., Tomasso, J. R., & Klaine, S. J. (2004). Influence of multiple water- quality characteristics on copper toxicity to fathead minnows (Pimephales promelas). Environmental Toxicology and Chemistry, 23(12), 2900–2905.CrossRefGoogle Scholar
  22. Starodub, M. E., Wong, T. S., Mayfield, C. I., & Chau, Y. K. (1987). Influence of complexation and pH on individual and combined heavy metal toxicity to a freshwater green alga. Canadian Journal of Fisheries and Aquatic Sciences, 44, 1173–1180.CrossRefGoogle Scholar
  23. Subramanian, K. S. (1987). Determination of Cr(III) and Cr(VI) by ammonium pyrrolidinecarbodithioate-methyl isobutyl ketone furnace atomic absorption spectrometry. Analytical Chemistry, 60(1), 11–15.CrossRefGoogle Scholar
  24. Wurts, W. A., & Perschbacher, P. W. (1994). Effects of bicarbonate alkalinity and calcium on the acute toxicity of copper to juvenile channel catfish (Ictalurus punctatus). Aquaculture, 125, 73–79.CrossRefGoogle Scholar
  25. Yap, C. K., Ismail, A., & Tan, S. G. (2003). Can the byssus of green-lipped mussel Perna viridis (Linnaeus) from the west coast of Peninsular Malaysia be a biomonitoring organ for Cd, Pb and Zn? Field and laboratory studies. Environmental Interpretation, 29, 521–528.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Water Resources Research CenterUniversity of Hawaii at ManoaHonoluluUSA

Personalised recommendations