Environmental Monitoring and Assessment

, Volume 166, Issue 1–4, pp 379–386 | Cite as

Some potential hazardous trace elements contamination and their ecological risk in sediments of western Chaohu Lake, China

  • Liu-Gen Zheng
  • Gui-Jian Liu
  • Yu Kang
  • Ren-Kang Yang


The Chaohu is one of the largest five freshwater lakes in China. It provides freshwater for agriculture, life, and part of industry. The quality of water becomes worst and worst due to the toxic matter. In this study, we collected the samples from the sedimentary mud in the lake. The distribution of some potential hazardous trace elements (Cu, Ni, Cr, As, Pb, Cd, and Hg) in the sediments of western Chaohu Lake, has been determined and studied, and the enrichment factors, the index of geoaccumulation, and potential ecological risk were analyzed and calculated. The results show that: the levels of selected potential hazardous trace element vary from different sampling sites and significant anthropogenic impact of Pb and Cd occur in sediments. The contamination rank of Pb and Cd are moderate, and Pb has a light potential ecological risk, but Cd is heavy. The total potential ecological risk of the selected hazardous trace elements in this study in Chaohu Lake is moderate. Cluster and correlation analysis indicate that the selected potential hazardous trace element pollutant has different source and co-contamination also occur in sediments.


Heavy metals Sediments Chaohu Lake Potential ecological risk 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Audry, S., Schäfer, J., Blanc, G., et al. (2004). Fifty-year sedimentary record of heavy metal pollution (Cd, Zn, Cu, Pb) in the Lot River reservoirs (France). Environmental Pollution, 132(3), 413–426. doi: 10.1016/j.envpol.2004.05.025.CrossRefGoogle Scholar
  2. Cao, D. J., Yue, Y. D., Huang, X. M., et al. (2004). Environmental quality assessment of Pb, Cu, Fe pollution in Chaohu Lake waters. China Environmental Science, 24(4), 509–512 (in Chinese with English abstract).Google Scholar
  3. Chen, H., & Wang, J. (1999). Endangerment and control strategy of eutrophication of Chaohu Lake. Chinese Journal of Hefei University Technology, 22(S1), 63–66 (in Chinese with English abstract).Google Scholar
  4. Covelli, S., & Fontolan, G. (1997). Application of a normalization procedure in determining regional geochemical baselines. Environmental Geology, 30, 34–45. doi: 10.1007/s002540050130.CrossRefGoogle Scholar
  5. Förstner, U., & Whitman, G. T. W. (1981). Metal pollution in the aquatic environment (p. 486). Berlin: Springer.Google Scholar
  6. Hakanson, L. (1980). An ecological risk index for aquatic pollution control, a sedimentological approach. Water Research, 14, 975–1002. doi: 10.1016/0043-1354(80)90143-8.CrossRefGoogle Scholar
  7. Han, W. Y., Zhao, F. J., Shi, Y. Z., et al. (2006a). Scale and causes of lead contamination in Chinese tea. Environmental Pollution, 139(1), 125–132. doi: 10.1016/j.envpol.2005.04.025.CrossRefGoogle Scholar
  8. Han, X. R. (1998). A case study on water quality in Chaohu Lake. Chinese Journal of Water Resource Protection, 24, 153–156 (in Chinese with English abstract).Google Scholar
  9. Han, Y. M., Du, P. X., Cao, J. J., et al. (2006b). Multivariate analysis of heavy metal contamination in urban dusts of Xi’an, Central China. The Science of the Total Environment, 355(1–3), 176–186. doi: 10.1016/j.scitotenv.2005.02.026.Google Scholar
  10. Ji, Y. Q., Feng, Y. C., Wu, J. H., et al. (2008). Using geoaccumulation index to study source profiles of soil dust in China. Journal of Environmental Sciences (China), 20, 571–578. doi: 10.1016/S1001-0742(08)62096-3.Google Scholar
  11. Jin, C. W., He, Y. F., Zhang, K., et al. (2005). Lead contamination in tea leaves and non-edaphic factors affecting it. Chemosphere, 61(5), 726–732. doi: 10.1016/j.chemosphere.2005.03.053.CrossRefGoogle Scholar
  12. Li, Y. H. (1981). Geochemical cycles of elements and human perturbation. Geochimica et Cosmochimica Acta, 45, 2073–2084. doi: 10.1016/0016-7037(81)90061-2.CrossRefGoogle Scholar
  13. Loska, K., Cebula, J., & Pelczar, J. (1997). Use of enrichment, and contamination factors together with geoaccumulation indexes to evaluate the content of Cd, Cu, and Ni in the Rybnik Water Reservoir in Poland. Water, Air, & Soil Pollution, 93, 347.Google Scholar
  14. Loska, K., Wiechula, D., Barska, B., et al. (2003). Assessment of arsenic enrichment of cultivated soils in southern Poland. Polish Journal of Environmental Studies, 12(2), 187–192.Google Scholar
  15. Muniz, P., Venturini, N., & Gómez-erache, M. (2004). Spatial distribution of chromium and lead in the benthic environment of coastal areas of the RÍO DE LA plata estuary (Montevideo, Uruguay). Brazilian Journal of Biology, 64(1), 103–116. doi: 10.1590/S1519-69842004000100012.CrossRefGoogle Scholar
  16. Sinex, S. A., & Wright, D. A. (1988). Distribution of trace metals in the sediments and biota of Chesapeake Bay. Marine Pollution Bulletin, 19, 425–431. doi:  10.1016/0025-326X(88)90397-9.CrossRefGoogle Scholar
  17. Slobodan, M., Goran, D., & Esad, P. (1999). Evalution of terra rossa geochemical baselines from Croatian karst regions. Journal of Geochemical Exploration, 66, 173–182. doi: 10.1016/S0375-6742(99)00010-2.CrossRefGoogle Scholar
  18. Susana, O. R., Daniel, dela R., Lazaro, L., et al. (2005). Assessment of heavy metal levels in Almendares River sediments-Havana City, Cuba. Water Research, 39, 3945–3953.Google Scholar
  19. Sutherland, R. A. (2000). Bed sediment-associated trace metals in and urban stream, Oahu, Hawaii. Environmental Geology, 39(6), 611–627. doi: 10.1007/s002540050473.CrossRefGoogle Scholar
  20. Szefer, P., Fowler, S. W., Ikuta, K., et al. (2006). A comparative assessment of heavy metal accumulation in soft parts and byssus of mussels fro subbarctic, temperate, subtropical and tropical marine environments. Environmental Pollution, 139(1), 70–78. doi: 10.1016/j.envpol.2005.04.031.CrossRefGoogle Scholar
  21. Trefry, J. H., & Presley, B. J. (1976). Heavy metals in sediments from San Antonio Bay and the northwest Gulf of Mexico. Environmental Geology, 1, 282–294. doi: 10.1007/BF02676717.CrossRefGoogle Scholar
  22. Tu, H., Gu, D., Yin, C., et al. (1990). Chaohu Lake-study on eutrophication (pp. 1–226). Hefei, China: University of China Science and Technology Press (in Chinese).Google Scholar
  23. Turekian, K. K., & Wedepohl, K. H. (1961). Distribution of the elements in some major units of the earth’s crust. Bulletin of the Geological Society of America, 72, 175–192. doi: 10.1130/0016-7606(1961)72[175:DOTEIS]2.0.CO;2.CrossRefGoogle Scholar
  24. Wang, Y. H., Liu, Z. Y., Liu, W., et al. (2003). Distribution and correlation characteristics between pollutants in sediment in Chaohu Lake, China. Acta Scientiarum Naturalium Universitatis Pekinensis, 39(4), 501–506.Google Scholar
  25. Xu, M. Q., Cao, H., Xie, P., et al. (2005). Use of PFU protozoan community structural and functional characteristics in assessment of water quality in a large, highly polluted freshwater lake in China. Journal of Environmental Monitoring, 7, 670–674. doi: 10.1039/b504396b.CrossRefGoogle Scholar
  26. Yin, C., & Bernhardt, K. (1992). Ecological effects of pollution in Chaohu Lake, China. Journal of Environmental Science(China)-Special Issue, 4(2), 1–128.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Liu-Gen Zheng
    • 1
  • Gui-Jian Liu
    • 1
    • 2
  • Yu Kang
    • 1
  • Ren-Kang Yang
    • 1
  1. 1.CAS Key Laboratory of Crust-Mantle Materials and the Environment, School of Earth and Space SciencesUniversity of Science and Technology of ChinaHefeiChina
  2. 2.State Key Laboratory of Loess and Quaternary Geology, Institute of Earth EnvironmentThe Chinese Academy of SciencesXi’anChina

Personalised recommendations