Advertisement

Environmental Monitoring and Assessment

, Volume 166, Issue 1–4, pp 293–302 | Cite as

Recovery of benthic invertebrate communities from acidification in Killarney Park lakes

  • Erik J. Szkokan-Emilson
  • Brian E. Wesolek
  • John M. Gunn
  • Chantal Sarrazin-Delay
  • Jenna Bedore
  • Farrah Chan
  • Deborah Garreau
  • Angela O’Grady
  • Chris Robinson
Article

Abstract

Using a reference-condition comparison, recovery of benthic invertebrate communities from acidification was assessed in three lakes in Killarney Wilderness Park approximately 40–60 km from the massive metal smelters in Sudbury, Canada. Test site analyses (TSAs) were used to compare the park lakes to 20 reference lakes near Dorset Ontario, 200 km to the east. An extension of a previous survey (1997–2001) of two sensitive mayfly species (Stenonema femoratum and Stenacron interpunctatum) was conducted in one of the lakes. TSA results indicate that the three Killarney lakes remain significantly different from reference condition due primarily to higher abundances of a few acid-tolerant families and the presence of some less abundant sensitive families. Colonization rates differ greatly between the two mayfly species presumably because of competition for available habitat. Overall, this study suggests that early colonizers will gain an advantage to out-compete subsequent arrivals, and these competitive interactions will delay the return of communities to reference condition.

Keywords

Lake acidification Acid rain Recovery Test site analysis Benthic invertebrates Competition Colonization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beamish, R. J., & Harvey, H. H. (1972). Acidification of the La Cloche Mountain Lakes, Ontario and resulting fish mortalities. Journal of the Fisheries Research Board of Canada, 29, 1131–1143.Google Scholar
  2. Bowman, M. F., & Somers, K. M. (2006). Evaluating a novel Test Site Analysis (TSA) bioassessment approach. Journal of the North American Benthological Society, 25(3), 712–717. doi: 10.1899/0887-3593(2006)25[712:EANTSA]2.0.CO;2.CrossRefGoogle Scholar
  3. Carbone, J., Keller, W., & Griffiths, R. W. (1998). Effects of changes in acidity on aquatic insects in rocky littoral habitats of lakes near Sudbury, Ontario. Restoration Ecology, 6(4), 376–389. doi: 10.1046/j.1526-100X.1998.06408.x.CrossRefGoogle Scholar
  4. Curry, R. A., & Powles, P. M. (1991). The insect community in an outlet stream of an acidified lake. Naturaliste Canadien, 118, 27–34.Google Scholar
  5. DeMeester, L., Gomez, A., Okamura, B., & Schwerik, K. (2002). The monopolization hypothesis and the dispersal-gene flow paradox in aquatic organisms. Acta Oecologica, 23, 121–135. doi: 10.1016/S1146-609X(02)01145-1.CrossRefGoogle Scholar
  6. Giberson, D. J., & MacKay, R. J. (1991). Life history and distribution of mayflies (Ephemeroptera) in some acid streams in south central Ontario, Canada. Canadian Journal of Zoology, 69(4), 899–910. doi: 10.1139/z91-135.CrossRefGoogle Scholar
  7. Hauer, F. R., & Lamberti, G. A. (2007). Methods in stream ecology, 2nd edition. New York: Academic.Google Scholar
  8. Keller, W., Heneberry, J. H., & Dixit, S. S. (2003). Decreased acid deposition and the chemical recovery of Killarney, Ontario, lakes. Ambio, 32(3), 183–189.Google Scholar
  9. Keller, W., Heneberry, J. H., McLachlan, E., & MacPhee, S. (2006). Data report: 25 years of extensive monitoring of acidified lakes in the Sudbury area, 1981–2005. Sudbury, ON: Cooperative Freshwater Ecology Unit.Google Scholar
  10. Keller, W., Yan, N. D., Gunn, J. M., & Heneberry, J. (2007). Recovery of acidified lakes: Lessons from Sudbury, Ontario, Canada. Water Air and Soil Pollution Focus, 7(1–3), 317–322. doi: 10.1007/s11267-006-9061-2.Google Scholar
  11. Kerekes, J., Freedman, B., Howell, G., & Clifford, P. (1984). Comparison of the characteristics of an acidic eutrophic, and an acidic oligotrophic lake near Halifax, Nova Scotia. Water Pollution Research Journal of Canada, 19, 1–10.Google Scholar
  12. Krekes, J., & Freeman, B. (1989). Characteristics of three acidic lakes in Kejimkujik National Park, Nova Scotia, Canada. Archives of Environmental Contamination and Toxicology, 18(1–2), 183–200. doi: 10.1007/BF01056203.CrossRefGoogle Scholar
  13. Ledger, M., & Hildrew, A. (2005). The ecology of acidification and recovery: Changes in herbivore–algal food web linkages across a stream ph gradient. Environmental Pollution, 137(1), 103–118. doi: 10.1016/j.envpol.2004.12.024.CrossRefGoogle Scholar
  14. McCafferty, W. P. (1998). Aquatic Entomology: The fisherman’s and ecologists’ illustrated guide to insects and their relatives. Boston: Science Books International.Google Scholar
  15. Merritt, R. W., & Cummins, K. W. (1996). An Introduction to the aquatic insects of North America, 3rd Edition. Iowa: Kendal/Hunt.Google Scholar
  16. Monteith, D., Hildrew, A., Flower, R., Raven, P., Beaumont, W., Collen, P., et al. (2005). Biological responses to the chemical recovery of acidified fresh waters in the UK. Environmental Pollution, 137(1), 83–101. doi: 10.1016/j.envpol.2004.12.026.CrossRefGoogle Scholar
  17. Oliver, B. G., & Kelso, J. R. M. (1983). A role for sediments in retarding the acidification of headwater lakes. Water, Air, and Soil Pollution, 20, 379–389. doi: 10.1007/BF00208512.CrossRefGoogle Scholar
  18. Peckarsky, B. L., Fraissinet, P., Penton, M. A., & Conklin, D. J., Jr. (1990). Freshwater macroinvertebrates of Northeastern North America. New York: Cornell University Press.Google Scholar
  19. Potvin, R. R., & Negusanti, J. J. (1995). Declining industrial emissions, improving air quality, and reduced damage to vegetation. In J. M. Gunn (Ed.), Restoration and recovery of an industrial region. New York: Springer.Google Scholar
  20. Prejs, K., & Lazarek, S. (1988). Benthic nematodes in acidified lakes: Case of a neglected grazer. Hydrobiologia, 169, 193–197.Google Scholar
  21. Rowe, L., & Berrill, M. (1989). The life cycles of five closely related mayfly species (Ephemeroptera: Heptageniidae) coexisting in a small Southern Ontario stream pool. Aquatic Insects, 11(2), 73–80. doi: 10.1080/01650428909361351.CrossRefGoogle Scholar
  22. Snucins, E. (2003). Recolonization of acid-damaged lakes by the benthic invertebrates Stenacron interpunctatum, Stenonema femoratum, and Hyalella azteca. Ambio, 32(3), 225–229.Google Scholar
  23. Snucins, E., & Gunn, J. M. (1998). Chemical and biological status of Killarney Park lakes (1995–1997), a study of lakes in the early stages of recovery from acidification. Sudbury, ON: Ontario Ministry of Natural Resources, Cooperative Freshwater Ecology Unit.Google Scholar
  24. Snucins, E., Gunn, J. M., Keller, W., Dixit, S. S., Hindar, A., & Henriksen, A. (2001). Effects of regional reductions in sulphur deposition on the chemical and biological recovery of lakes within Killarney Park, Ontario, Canada. Environmental Monitoring and Assessment, 67, 179–194. doi: 10.1023/A:1006434622970.CrossRefGoogle Scholar
  25. Wiggins, G. B. (1996). Larvae of North American caddisfly genera (Trichoptera), 2nd edition. Toronto: University of Toronto Press.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Erik J. Szkokan-Emilson
    • 1
  • Brian E. Wesolek
    • 1
  • John M. Gunn
    • 1
  • Chantal Sarrazin-Delay
    • 1
  • Jenna Bedore
    • 2
  • Farrah Chan
    • 3
  • Deborah Garreau
    • 4
  • Angela O’Grady
    • 2
  • Chris Robinson
    • 3
  1. 1.Cooperative Freshwater Ecology Unit, Biology DepartmentLaurentian UniversitySudburyCanada
  2. 2.Department of BiologyQueens UniversityKingstonCanada
  3. 3.Department of BiologyUniversity of WaterlooWaterlooCanada
  4. 4.Biology DepartmentTrent UniversityPeterboroughCanada

Personalised recommendations