Environmental Monitoring and Assessment

, Volume 166, Issue 1–4, pp 149–157 | Cite as

Evaluation of drinking quality of groundwater through multivariate techniques in urban area

  • Madhumita Das
  • A. Kumar
  • M. Mohapatra
  • S. D. Muduli


Groundwater is a major source of drinking water in urban areas. Because of the growing threat of debasing water quality due to urbanization and development, monitoring water quality is a prerequisite to ensure its suitability for use in drinking. But analysis of a large number of properties and parameter to parameter basis evaluation of water quality is not feasible in a regular interval. Multivariate techniques could streamline the data without much loss of information to a reasonably manageable data set. In this study, using principal component analysis, 11 relevant properties of 58 water samples were grouped into three statistical factors. Discriminant analysis identified “pH influence” as the most distinguished factor and pH, Fe, and NO\(_{3}^{-}\) as the most discriminating variables and could be treated as water quality indicators. These were utilized to classify the sampling sites into homogeneous clusters that reflect location-wise importance of specific indicator/s for use to monitor drinking water quality in the whole study area.


Drinking quality Groundwater Urban area Multivariate techniques Water quality indicators 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. American Public Health Association (1995). Standard methods for the examination of water and waste water (19th ed.). Washington, D.C.: American Public Health Association.Google Scholar
  2. Bartolomeo, A. D., Poletti, L., Sanchini, G., Sebastiani, B., & Morozzi, G. (2004). Relationship among parameters of lake polluted sediments by multivariate statistical analysis. Chemosphere, 55(10), 1323–1329. doi: 10.1016/j.chemosphere.2003.12.005.CrossRefGoogle Scholar
  3. Biswal, S. K., Mayhi, B., & Behera, J. P. (2001). Groundwater quality near ash pond of thermal power plant. Journal of Pollution Research, 20(30), 487–490.Google Scholar
  4. Brejda, J. J., Karlen, D. L., Smith, J. L., & Allan, D. L. (2000a). Identification of regional soil quality factors and indicators: II. Northern Mississippi loess hills and Palouse prairie. Soil Science Society of America Journal, 64, 2125–2135.Google Scholar
  5. Brejda, J. J., Moorman, T. B., Karlen, D. L., & Deo, T. H. (2000b). Identification of regional soil quality factors and indicators: I. Central and southern high plains. Soil Science Society of America Journal, 64, 2115–2124.Google Scholar
  6. Handa, B. K. (1992). Status report on groundwater pollution in India, In Pollution of groundwater by potassium in India(Vol. 1, pp. 1–301). Government of India: Central Groundwater Board.Google Scholar
  7. Hegde, S. N., & Puranik, S. C. (1990). Groundwater quality studies of Hubli-Dharwad Municipal Corporation Area, Karnataka. In Proceedings of VII convention of I.G.C and national seminar, Bangalore.Google Scholar
  8. Hudak, P. F. (2000). Regional trends in nitrate content of Texas groundwater. Journal of Hydrology (Amsterdam), 228(1/2), 37–47. doi: 10.1016/S0022-1694(99)00206-1.CrossRefGoogle Scholar
  9. Ibe, K. M., & Agbamu, P. U. (1999). Impact of human activities on groundwater quality of an alluvial aquifer, a case study of the Warri River, Delta state, SW, Nigeria. International Journal of Environmental Health Research, 9(4), 329–334. doi: 10.1080/09603129973128.CrossRefGoogle Scholar
  10. ICMR (1975). Manual of standard quality for drinking water supplies. Special report series no. 44, 2nd ed.Google Scholar
  11. ISI (1991). Indian standard specification for drinking water, IS: 10500, New Delhi.Google Scholar
  12. Jammel, A., & Hussain, A. Z. (2003). Impact of sewage on the quality of Uyakandan channel water of River Cauvery at Tiruchirapalli. Indian Journal of Environmental Protection, 23(6), 660–662.Google Scholar
  13. Lambrakis, N., Antonakos, A., & Panagopoulos, G. (2004). The use of multicomponent statistical analysis in hydrogeological environmental research. Water Research, 38(7), 1862–1872. doi: 10.1016/j.watres.2004.01.009.CrossRefGoogle Scholar
  14. Maruthi, Y. A., Rao, S. R., & Kiran, D. S. S. (2004). Evaluation of groundwater pollution potential in Chandranagar Visakhapatnam: A case study. Journal of Ecobiology, 16(6), 423–430.Google Scholar
  15. McDonald, A. T., & Kay, D. (1988). Water resources: Issues and strategies. Harlow, U.K.: Longman Scientific and Technical.Google Scholar
  16. Norusis, M. J. (2000). SPSS 10.0 guide to data analysis. Upper Saddle River, N.J.: Prentice hall.Google Scholar
  17. Pandey, D. S., & Mukherjee, S. (1994). Nitrate contamination in groundwater in Varanasi City and its environs, Uttar Pradesh, India. In Proceedings of the regional workshop on environmental aspects of groundwater development, 17–19 October (pp. 123–129). India, IAH Roorkee: Kurukshetra University.Google Scholar
  18. Reddy, P. M. & Rao, S. (2001). Effect of industrial effluents on the groundwater regime in Visakhapatnam. Journal of Pollution Research, 20(3), 383–386.Google Scholar
  19. Reghunath, R., Murthy, T. R. S., & Raghavan, B. R. (2002). The utility of multivariate statistical techniques in hydrochemical studies: An example from Karnataka, India. Water Research, 36(10), 2437–2442. doi: 10.1016/S0043-1354(01)00490-0.CrossRefGoogle Scholar
  20. Rout, D. K., & Dash, M. C. (1998). Environment status of Bhubaneswar (pp. 10–17). Bhubaneswar: Orissa Pollution Control Board.Google Scholar
  21. Simeonov, V., Stratis, J. A., Samara, C., Zachariadis, G., Voutsa, D., Anthemidis, A., et al. (2003). Assessment of the surface water quality in Northern Greece. Water Research, 37(17), 4119–4124. doi: 10.1016/S0043-1354(03)00398-1.CrossRefGoogle Scholar
  22. Srivastava, V. S., & Nemade, P. N. (1997). Groundwater pollution by industrial waste, a statistical approach. Journal of Indian Water Works Association, 29, 247–250.Google Scholar
  23. Su, J. M., Fu, R. H., Zhou, J. B., & Zhang, L. H. (2000). Practical guide of SPSS 10.0 for Windows (pp. 1–287). Beijing, China: Publishing House of Electronics Industry.Google Scholar
  24. Tiwari, T. N., & Mishra, M. (1985). A preliminary assignment of water quality index of major Indian rivers. Indian Journal of Environmental Protection, 5(4), 276–279.Google Scholar
  25. Vega, M., Pardo, R., Barrado, E., & Deban, L. (1998). Assessment of seasonal and polluting effects on the quality of river water by exploratory data analysis. Water Research, 32(12), 3581–3592. doi: 10.1016/S0043-1354(98)00138-9.CrossRefGoogle Scholar
  26. Vidal, M., & Melgar, M. J. (2000). Spatiotemporal characterization of groundwater contamination as a result of urban effects. Journal of Water, Air and Soil Pollution, 121(1/4), 367–377. doi: 10.1023/A:1005203015980.CrossRefGoogle Scholar
  27. World Health Organization (WHO) (1984). Guidelines for drinking water quality I. Geneva: WHO.Google Scholar
  28. World Health Organization (WHO) (2004). Guidelines for drinking water quality (Vol. 1, 3rd ed.). Geneva: WHO.Google Scholar
  29. Wunderlin, D. A., Diaz, M. P., Ame, M. V., Pesce, S. F., Hued, A. C., & Bistoni, M. A. (2001). Pattern recognition techniques for the evaluation of spatial and temporal variations in water quality. A case study: Suquía river basin (Córdoba–Argentina). Water Research, 35(12), 2881–2894. doi: 10.1016/S0043-1354(00)00592-3.CrossRefGoogle Scholar
  30. Yatas, M. V. (1985). Septic tank density and groundwater contamination. Ground Water, 23, 586–591. doi: 10.1111/j.1745-6584.1985.tb01506.x.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Madhumita Das
    • 1
  • A. Kumar
    • 1
  • M. Mohapatra
    • 1
  • S. D. Muduli
    • 1
  1. 1.Water Technology Centre for Eastern RegionBhubaneswarIndia

Personalised recommendations