Environmental Monitoring and Assessment

, Volume 165, Issue 1–4, pp 553–558 | Cite as

Relationship between airborne fungal allergens and meteorological factors in Manisa City, Turkey



In this study, the effect of relative humidity, temperature, and wind on airborne fungal allergens in the 11 different districts of Manisa City was investigated from January 2004 to December 2005. The aim of this study was to conduct a survey to get to know the relation between wind, temperature, and relative humidity and population of allergenic fungal spores in the atmosphere. A total of 792 samples were observed by using the Merck MAS100 air sampler and 12,988 fungal colonies were counted. Fourteen fungal genera could be determined; Cladosporium that was generally found as the predominant genus followed by Penicillium, Aspergillus, and Alternaria. During the entire study, seasonal variation was found to be related to atmospheric conditions especially. The optimal conditions of meteorological factors for the fungi growth resulted in the increased number of mycoflora, qualitatively and quantitatively.


Fungal allergy Temperature Humidity Atmosphere Manisa Turkey 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adhikari, A., Sen, M. M., Bhattcharya, S. G., Chanda, S., et al. (2004). Airborne viable, non-viable and allergenic fungi in a rural agricultural area of India. The Science of the Total Environment, 326, 123–141. doi: 10.1016/j.scitotenv.2003.12.007.CrossRefGoogle Scholar
  2. Afzal, M., & Mehdi, F. S. (2002). Atmospheric fungi of Karachi city. Pakistan Journal of Biological Sciences, 5(6), 707–709.CrossRefGoogle Scholar
  3. Asan, A., İlhan, S., Şen, B., Erkara, I. P., Filik, C., Çabuk, A., et al. (2004). Airborne fungi and actinomycetes concentrations in the air of Eskişehir City (Turkey). Indoor and Built Environment, 13, 63–74. doi: 10.1177/1420326X04033843.CrossRefGoogle Scholar
  4. Barnett, H. L. (1960). Illustrated genera of imperfect fungi (2nd ed.). Minneapolis: Burgess Publishing Company.Google Scholar
  5. Bush, R. K., & Portnoy, J. M. (2001). The role and abatement of fungal allergens in allergic diseases. The Journal of Allergy and Clinical Immunology, 107, 430–440. doi: 10.1067/mai.2001.113669.CrossRefGoogle Scholar
  6. Colakoglu, G. (2004). Indoor and outdoor mycoflora in the different districts of the city of Istanbul (Turkey). Indoor and Built Environment, 13, 91–100. doi: 10.1177/1420326X04038873.CrossRefGoogle Scholar
  7. Cvetnic, Z., & Pepeljnjak, S. (1997). Distribution and mycotoxin-producing ability of some fungal isolates from the air. Atmospheric Environment, 31(3), 491–495. doi: 10.1016/S1352-2310(96)00158-6.CrossRefGoogle Scholar
  8. Domsch, K. H., Gams, W., & Anderson, T. H. (1980). Compendium of soil fungi (Vol. 1–2). Academic Press.Google Scholar
  9. Fang, Z., Ouyang, Z., Hu, L., Wang, X., Zheng, H., Lin, X., et al. (2005). Culturable airborne fungi in outdoor environments in Beijing, China. The Science of the Total Environment, 350(1), 47–58. doi: 10.1016/j.scitotenv.2005.01.032.CrossRefGoogle Scholar
  10. Gelincik, A. A., Buyukozturk, S., Gul, H., Gungor, G., Issever, H., Cagatay, A., et al. (2005). The effects of indoor fungi on the symptoms of patients with allergic rhinitis in Istanbul. Indoor and Built Environment, 14(5), 427–432. doi: 10.1177/1420326X05058107.CrossRefGoogle Scholar
  11. Hargreaves, M., Parappukkaran, S., Morawska, L., Hitchins, J., He, C., Gilbert, D., et al. (2003). A pilot investigation into associations between indoor airborne fungal and non-biological particle concentrations in residental houses in Brisbane, Australia. The Science of the Total Environment, 312, 89–101. doi: 10.1016/S0048-9697(03)00169-4.CrossRefGoogle Scholar
  12. Horner, W. E., Helbling, A., Salvaggio, J. E., Lehrer, S. B., et al. (1995). Fungal allergens. Clinical Microbiology Reviews, 8, 161–179.Google Scholar
  13. Huang, C. Y., Lee, C. C., Li, F. C., Ma, Y. P., Su, H. J. J., et al. (2002). The seasonal distribution of bioaerosols in municipal landfill sites. Atmospheric Environment, 36, 4385–4395. doi: 10.1016/S1352-2310(02)00322-9.CrossRefGoogle Scholar
  14. Ismail, M. A., Chebon, S. K., Nakamya, R., et al. (1999). Preliminary surveys of outdoor and indoor aeromycobiota in Uganda. Mycopathologia, 148, 41–51. doi: 10.1023/A:1007195708478.CrossRefGoogle Scholar
  15. Klich, M. A. (2002). Identification of common Aspergillus species (1st ed.). Utrecht: CBS publication.Google Scholar
  16. Myszkowska, D., Stepalska, D., Obtulowicz, K., Porebski, G., et al. (2002). The relationship between airborne pollen and fungal spore concentrations and seasonal pollen allergy symptoms in Cracow in 1997–1999. Aerobiologia, 18, 153–161. doi: 10.1023/A:1020603717191.CrossRefGoogle Scholar
  17. Okten, S. S., Asan, A., Tungan, Y., Ture, M., et al. (2005). Airborne fungal concentrations in east patch of Edirne City (Turkey) in autumn using two sampling methods. Trakya University Journal of Science, 6(1), 97–106.Google Scholar
  18. Pepeljnjak, S., & Segvic, M. (2003). Occurrence of fungi in air and on plants in vegetation of different climatic regions in Croatia. Aerobiologia, 19, 11–19. doi: 10.1023/A:1022693032075.CrossRefGoogle Scholar
  19. Pitt, J. I. (1979). The genus Penicillium and its teleomorphic stages Eupenicillium and Talaromyces. London: Academic Press.Google Scholar
  20. Pitt, J. I. (2000). A laboratory guide to common Penicillium species. Food Science Australia.Google Scholar
  21. Sakiyan, N., & Inceoglu, O. (2003). Atmospheric concentration of Cladosporium and Alternaria spores in Ankara and the effect of meteorological factors. Turkish Journal of Botany, 27, 77–81.Google Scholar
  22. Samson, R. A., & Pitt, J. I. (2000). Integration of modern taxonomic methods for Penicillium and Aspergillus classification. Amsteldijk: Harwood Academic Publishers.Google Scholar
  23. Samson, R. A., Hoekstra, E. S., Frisvad, J. C., et al. (2004). Introduction to food and airborne fungi. Holland: CBS Publication.Google Scholar
  24. Shelton, B. G., Kirkland, K. H., Flanders, W. D., Morris, G. K., et al. (2002). Profiles of airborne fungi in buildings and outdoor environments in the United States. Applied and Environmental Microbiology, 68, 1743–1753. doi: 10.1128/AEM.68.4.1743-1753.2002.CrossRefGoogle Scholar
  25. Singh, J. (2001). Occupational exposure to moulds in buildings. Indoor and Built Environment, 10, 172–178.Google Scholar
  26. Su, H. J. J., Chen, H. L., Huang, C. F., Lin, C. Y., Li, F. C., et al. (2002). Milton DK. Airborne fungi and endotoxin concentrations in different areas within textile plants in Taiwan. Environmental Research Section, 89, 58–65. doi: 10.1006/enrs.2002.4345.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Faculty of Science & Arts, Department of BiologyCelal Bayar UniversityManisaTurkey

Personalised recommendations