Environmental Monitoring and Assessment

, Volume 165, Issue 1–4, pp 205–215 | Cite as

An implementation plan for using biological indicators to improve assessment of water quality in Thailand

  • Boonsatien Boonsoong
  • Narumon Sangpradub
  • Michael T. Barbour
  • Wijarn Simachaya


Most national standards for assessment of water quality include physical and chemical indicators relevant to specific pollutants and stressors. However, biological communities reflect not only current conditions of aquatic resources but also change in conditions over time and impacts from multiple stressors. Assessing the health of the aquatic community (that is, bioassessments) has proven to be critical in protecting and maintaining healthy surface waters under the mandates of regulatory frameworks, such as the Clean Water Act in the USA and the Water Framework Directive of the European Union. Whereas, in Thailand water standards, bioassessment is lacking in favor of chemical criteria, only coliform bacteria measurement can be considered a surrogate biological parameter. Our paper argues that incorporating bioassessment will improve water resource condition evaluations and recommends the use of the benthic macroinvertebrate assemblage as a bioassessment framework in Thailand. We discuss the implementation of a bioassessment program that consists of two major components, (a) a scientifically valid technical approach and (b) consideration of technical resources for a cost-effective program. The technical design comprises (1) classification of streams into similar groupings, (2) design of a biological survey, (3) a well-documented sampling protocol, (4) calibration of biological metrics for data analysis, (5) development of criteria for determination of ecological condition, and (6) communication of the results to citizens and policymakers. A cost-effective way to develop a bioassessment program that will improve Thailand’s ability to measure water quality and to make good decisions to attain healthy quality status is to establish partnerships by coordinating efforts and sharing data and technology with adjacent regional environmental offices or provinces. This collaboration would be fostered through a long-term national water resources management strategy and clear definition of goals and desired outcomes that are critical components of the overall National Plan for Ecological Health.


Water quality Biological indicators Benthic macroinvertebrates Thai streams Water resource management Bioassessment 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bailey, R. C., Norris, R. H., & Reynoldson, T. B. (2004). Bioassessment of freshwater ecosystem using the reference condition approach. Boston: Kluwer.Google Scholar
  2. Barbour, M. T. (2008). The societal benefit of biological assessment and monitoring in rivers. In O. Moog, D. Hering, S. Sharma, I. Stubauer, & T. Korte (Eds.), ASSESS-HKH: Proceedings of the scientific conference “Rivers in the Hindu Kush–Himalaya—Ecology & Environmental Assessment” (pp. 5–7). Vienna: BOKU—University of Natural Resources and Applied Life Sciences.Google Scholar
  3. Barbour, M. T., & Gerritsen, J. (1996). Subsampling of benthic samples: a defense of the fixed-count method. Journal of the North American Benthological Society, 15, 386–391. doi: 10.2307/1467285.CrossRefGoogle Scholar
  4. Barbour, M. T., & Yoder, C. O. (2000). The multimetric approach to bioassessment as used in the United State of America. In J. F. Wright, D. W. Sutcliffe, & M. T. Furse (Eds.), Assessing the biological quality of freshwaters: RIVPACS and other techniques (pp. 281–292). Cumbria: Freshwater Biological Association.Google Scholar
  5. Barbour, M. T., Gerritsen, J., Snyder, B. D., & Stribling, J. B. (1999). Rapid bioassessment protocols for use in streams and wadable rivers: Periphyton, benthic macroinvertebrates and fish (2nd ed.). EPA 841-B-99-002. Washington D.C.: U.S. Environmental Protection Agency.Google Scholar
  6. Barbour, M. T., Poff, N. L., Norris, R. H., & Allan, J. D. (2008). Perspective: Communicating our science to influence policy. Journal of the North American Benthological Society, 27(3), 562–569. doi: 10.1899/07-051.1.CrossRefGoogle Scholar
  7. Barbour, M. T., Swietlik, W. F., Jackson, S. K., Courtemanch, D. L., Davies, S. P., & Yoder, C. O. (2000). Measuring the attainment of biological integrity in the USA: A critical element of ecological integrity. Hydrobiologia, 422/423, 453–464. doi: 10.1023/A:1017095003609.CrossRefGoogle Scholar
  8. Boonsoong, B. (2007). Rapid bioassessment for Thai streams with benthic macroinvertebrates. PhD thesis, Khon Kaen University, Thailand.Google Scholar
  9. Boonsoong, B., Sangpradub, N., & Barbour, M. T. (2008). Development of rapid bioassessment approaches using benthic macroinvertebrates for Thai streams. Environmental Monitoring and Assessment. doi: 10.1007/s10661-008-0423-2.Google Scholar
  10. Clarke, R. T., Wright, J. F., & Furse, M. T. (2003). RIVPACS models for predicting the expected macroinvertebrate fauna and assessing the ecological quality of rivers. Ecological Modelling, 160, 219–233. doi: 10.1016/S0304-3800(02)00255-7.CrossRefGoogle Scholar
  11. Davies, S., & Jackson, S. (2006). The biological condition gradient: A descriptive model for interpreting change in aquatic ecosystems. Ecological Applications, 16(4), 1251–1266. doi: 10.1890/1051-0761(2006)016[1251:TBCGAD]2.0.CO;2.CrossRefGoogle Scholar
  12. Diamond, J. M., Barbour, M. T., & Stribling, J. B. (1996). Characterizing and comparing bioassessment approaches and their results: A perspective. Journal of the North American Benthological Society, 15, 713–727. doi: 10.2307/1467818.CrossRefGoogle Scholar
  13. Karr, J. R., & Chu, E. W. (1999). Restoring life to running waters: Better biological monitoring. Washington, D.C.: Island.Google Scholar
  14. Lathrop, J. E., & Markowitz, S. A. (1995). Monitoring water resource quality using volunteers. In W. S. Davis, & T. P. Simon (Eds.), Biological assessment and criteria: Tools for water resource planning and decision making (pp. 303–314). New York: Lewis.Google Scholar
  15. Moog, O., & Chovanec, A. (2000). Assessing the ecological integrity of rivers: Walking the line among ecological, political and administrative interests. Hydrobiologia, 422/423, 99–109. doi: 10.1023/A:1017053829050.CrossRefGoogle Scholar
  16. Morse, J. C., Bae, Y. J., Munkhjargal, G., Sangpradub, N., Tanida, K., Vshivkova, T. S., et al. (2007). Freshwater biomonitoring with macroinvertebrates in East Asia. Frontiers in Ecology and the Environment, 5(1), 33–42. doi: 10.1890/1540-9295(2007)5[33:FBWMIE]2.0.CO;2.CrossRefGoogle Scholar
  17. Mustow, S. E. (2002). Biological monitoring of rivers in Thailand: Use and adaptation of the BMWP score. Hydrobiologia, 479, 191–229. doi: 10.1023/A:1021055926316 CrossRefGoogle Scholar
  18. Norris, R. H. (1995). Biological monitoring: The dilemma of data analysis. Journal of the North American Benthological Society, 14(3), 440–450. doi: 10.2307/1467210.CrossRefGoogle Scholar
  19. Norris, R. H., & Barbour, M. T. (2009). Bioassessment of aquatic ecosystems. In G. E. Likens (Ed.), Encyclopedia of Inland waters (Vol. 3 pp. 21–28). Oxford: Elsevier.CrossRefGoogle Scholar
  20. Parnrong, S. (2002). A review of biological assessment of freshwater ecosystems in Thailand. Report submitted to Mekong River Commission.Google Scholar
  21. Pollution Control Department (1997). Water quality criteria & standard in Thailand. Bangkok: Pollution Control Department, Ministry of Science Technology and Environment.Google Scholar
  22. Resh, V. H. (1995). Freshwater benthic macroinvertebrates and rapid assessment procedures for water quality monitoring in developing and newly industrialized countries. In W. S. Davis, & T. P. Simon (Eds.), Biological assessment and criteria: Tools for water resource planning and decision making (pp. 167–177). New York: Lewis.Google Scholar
  23. Resh, V. H. (2008). Which group is best? Attributes of different biological assemblages used in freshwater biomonitoring programs. Environmental Monitoring and Assessment, 138, 131–138. doi: 10.1007/s10661-007-9749-4.CrossRefGoogle Scholar
  24. Resh, V. H., & Jackson, J. K. (1993). Rapid assessment approaches to biomonitoring using benthic macroinvertebrates. In D. M. Rosenberg, & V. H. Resh (Eds.), Freshwater biomonitoring and benthic macroinvertebrates (pp. 195–233). New York: Chapman and Hall.Google Scholar
  25. Rosenberg, D. M., & Resh, V. H. (1993). Freshwater biomonitoring and benthic macroinvertebrates. New York: Chapman and Hall.Google Scholar
  26. Sangpradub, N., & Boonsoong, B. (2006). Identification of freshwater invertebrates of the Mekong river and tributaries. Vientiane: Mekong River Commission.Google Scholar
  27. Sangpradub, N., Inmuong, C., Hanjavanit, C., & Inmuong, U. (1998). A correlation study between freshwater benthic macroinvertebrate fauna and environmental quality factors in Nam Pong Basin. Research report submitted to Thailand Research Fund.Google Scholar
  28. Savan, B., Morgan, A. J., & Gore, C. (2003). Volunteer environmental monitoring and the role of universities: The case of Citizens’ Environmental Watch. Environmental Management, 31, 561–568. doi: 10.1007/s00267-002-2897-y.CrossRefGoogle Scholar
  29. Sethaputra, S., Thanopanuwat, S., Kumpa, L., & Pattanee, S. (2001). Thailand water vision: A case study. In L. H. Ti, & T. Facon (Eds.), From vision to action: A synthesis of experiences in Southeast Asia (pp. 71–98). Bangkok: The FAO–ESCAP Pilot Project on National Water Visions.Google Scholar
  30. Stoddard, J. L., Larsen, D. P., Hawkins, C. P., Johnson, R. K., & Norris, R. H. (2006). Setting expectations for the ecological condition of running waters: The concept of reference condition. Ecological Applications, 16(4), 1267–1276. doi: 10.1890/1051-0761(2006)016[1267:SEFTEC]2.0.CO;2.CrossRefGoogle Scholar
  31. Thorne, R. J., & Williams, W. P. (1997). The response of benthic macroinvertebrates to pollution in developing countries: A multimetric system of bioassessment. Freshwater Biology, 37, 671–686.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Boonsatien Boonsoong
    • 1
  • Narumon Sangpradub
    • 2
  • Michael T. Barbour
    • 3
  • Wijarn Simachaya
    • 4
  1. 1.Department of Zoology, Faculty of ScienceKasetsart UniversityBangkokThailand
  2. 2.Applied Taxonomic Research Center, Department of Biology, Faculty of ScienceKhon Kaen UniversityKhon KaenThailand
  3. 3.Center for Ecological SciencesTetra Tech, Inc.Owings MillsUSA
  4. 4.Air Quality and Noise Management Bureau, Pollution Control DepartmentMinistry of Natural Resource and EnvironmentBangkokThailand

Personalised recommendations