Advertisement

Environmental Monitoring and Assessment

, Volume 165, Issue 1–4, pp 193–203 | Cite as

Microbial activities and trace element contents in an urban soil

  • S. Papa
  • G. Bartoli
  • A. Pellegrino
  • A. Fioretto
Article

Abstract

Soil biological properties are influenced by trace metals. The main sources of these pollutants in the urban areas are industrial plants, power stations, domestic heating systems and motor vehicles. The aim of this work was to evaluate, in relation to distance from urban roads, soil trace metal concentrations (Pb, Cu, Cr, Cd and V) and their influence on C-microbial biomass as well as on soil respiration and enzyme activities (phosphatase glucosidase, galactosidase, xylanase, cellulase, trealase, protease and invertase). The samplings were carried out at four sites, along a route that goes from Giannone Street to Passionisti Street, two heavily travelled roads at two different times of the year (spring and autumn). Heavy metal contents and microbial activities were highest at the sites near the roads. The highest values of microbial activities were found in the inner site; here, on the contrary, the lowest concentrations of heavy metals were measured. Significant and negative correlations were found between microbial activity and heavy metal contents.

Keywords

Urban soil Trace element Microbial respiration Microbial biomass Enzyme activity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aceves, M. B., Grace, C., Hart, M., Lin, Q., & Brookes, P. C. (1994). Laboratory manual of the soil microbial biomass group (pp. 8, 9). Harpenden: Rothamsted Experimental Station, Soil Science Department.Google Scholar
  2. Bååth, E., Arnebrandt, K., & Nordgren, A. (1991). Microbial biomass and ATP in smelter-polluted forest humus. Bullettin of Environmental Contaminant and Toxicology, 47, 278–282.CrossRefGoogle Scholar
  3. Bardgett, R. D., Speir, T. W., Ross, D. J., Yeates, G. W., & Kettles, H. A. (1994). Impact of pasture contamination by copper, chromium and arsenic timber preservative on soil microbial proprieties and nematodes. Biology and Fertility of Soils, 18, 71–79. doi: 10.1007/BF00336448.CrossRefGoogle Scholar
  4. Belén Hinojosa, M., Carreira, J. A., Garcia-Ruiz, R., & Dick, R. P. (2004a). Soil moisture pre-treatment effects on enzyme activities as indicators of heavy metal-contaminated and reclaimed soils. Soil Biology & Biochemistry, 36, 1559–1568. doi: 10.1016/j.soilbio.2004.07.003.CrossRefGoogle Scholar
  5. Belén Hinojosa, M., Garcia-Ruiz, R., Vinegla, B., & José Carreira, A. (2004b). Microbiological rates and enzyme activities as indicators of functionality in soils affected by the Aznalcòllar toxic spill. Soil Biology & Biochemistry, 36, 1637–1644. doi: 10.1016/j.soilbio.2004.07.006.CrossRefGoogle Scholar
  6. Brookes, P. C., & McGrath, S. P. (1984). Effects of metal toxicity on the size of the soil microbial biomass. Journal of Soil Science, 35, 341–346. doi: 10.1111/j.1365-2389.1984.tb00288.x.CrossRefGoogle Scholar
  7. Brookes, P. C., Landman, A., Pruden, G., & Jenkinson, D. S. (1985). Chloroform fumigation and the release of soil nitrogen: A rapid direct extraction method for measuring microbial biomass nitrogen in soil. Soil Biology & Biochemistry, 17, 837–842. doi: 10.1016/0038-0717(85)90144-0.CrossRefGoogle Scholar
  8. Dell’Agnola, G., Nannipieri, P., & Nardi, S. (1993). Sostanza organica e molecole umiche. In Patron (Ed.), Ciclo della sostanza organica nel suolo (pp. 21–39). Bologna: Aspetti agronomici, chimici, ecologici, selvicolturali.Google Scholar
  9. Domsch, K. H. (1991). Status and perspectives of side-effect testing. Toxicological and Environmental Chemistry, 30, 147. doi: 10.1080/02772249109357649.CrossRefGoogle Scholar
  10. Eivazi, F., & Tabatabai, M. A. (1977). Phosphatases in soils. Soil Biology & Biochemistry, 9, 167–172. doi: 10.1016/0038-0717(77)90070-0.CrossRefGoogle Scholar
  11. Eivazi, F., & Tabatabai, M. A. (1988). Glucosidases and galattosidases in soils. Soil Biology & Biochemistry, 20, 601–606. doi: 10.1016/0038-0717(88)90141-1.CrossRefGoogle Scholar
  12. Filip, Z. (2002). International approach to assessing soil quality by ecologically-related biological parameters. Agriculture Ecosystems & Environment, 88, 169–174. doi: 10.1016/S0167-8809(01)00254-7.CrossRefGoogle Scholar
  13. Flieβbach, A., Martens, R., & Reber, H. H. (1994). Soil microbial biomass and microbial activity in soils treated with heavy metal contaminated sewage sludge. Soil Biology and Biochemistry, 26, 1201–1205.CrossRefGoogle Scholar
  14. Froment, A. (1972). Soil respiration in a mixed oak forest. Oikos, 23, 273–277.CrossRefGoogle Scholar
  15. Gadd, G. M. (1993). Interactions of fungi with toxic metals. New Phytologist, 124, 25–60, Transley Rewiew 47.CrossRefGoogle Scholar
  16. Ge, Y., Murray, P., & Hendershot, W. H. (2000). Trace metal speciation and bioavailability in urban soils. Environmental Pollution, 107, 137–144.CrossRefGoogle Scholar
  17. Gil-Sotres, F., Trasar-Cepeda, C., Leiro’ s, M. C., Seoane, S. (2005). Different approaches to evaluating soil quality using biochemical properties. Soil Biological and Biochemistry, 37, 877–887.CrossRefGoogle Scholar
  18. Giller, K. E., Witter, E., & McGrath, S. P. (1998). Toxicity of heavy metals to microorganisms and microbial processes in agricultural soils: a review. Soil Biology and Biochemistry, 30, 1389–1414.CrossRefGoogle Scholar
  19. Hattori, H. (1992). Influence of heavy metals on soil microbial activities. Soil Science and Plant Nutrition, 38, 93–100.Google Scholar
  20. Khan, M., & Scullion, J. (2000). Effect of soil on microbial responses to metal contamination. Environmental Pollution, 110, 115–125.CrossRefGoogle Scholar
  21. Kiem, R., & Kandeler, E. (1996). A simple method for determination of trealase activity. Microbiological Research, 152, 19–20.Google Scholar
  22. Kuperman, R. G., & Carreiro, M. M. (1997). Soil heavy metal concentrations, microbial biomass and enzyme activities in contaminated grassland ecosystem. Soil Biology and Biochemistry, 29(2), 179–190.CrossRefGoogle Scholar
  23. Ladd, J. N., & Butler, J. H. (1972). Short-term assay of soil proteolytic enzyme activities using protein and dipeptide derivates as substrates. Soil Biology and Biochemistry, 4, 19–30.CrossRefGoogle Scholar
  24. Legislative decree (1999). D.M.(Ambiente) 25 Ottobre 1999 n.471. In G.U. n.293, 15 Dicembre 1999.Google Scholar
  25. Leita, L., De Nobili, M., Muhlbachova, G., Mondini, C., Marchiol, L., & Zerbi, G. (1995). Bioavailability and effects of heavy metals on soil microbial biomass survival during laboratory incubation. Biology and Fertility of Soils, 19, 103–108.CrossRefGoogle Scholar
  26. Li, X., Poon, C. S., Liu, P. S. (2001). Heavy metal contamination of urban soils and street dusts in Hong Kong. Applied Geochemistry, 16, 1361–1368.CrossRefGoogle Scholar
  27. Lindsay, W. L., & Norvell, W. A. (1978). Development of a DTPA micronutrient soil test for zinc, iron, manganese, and copper. Soil Science Society of America Journal, 42, 421–428.Google Scholar
  28. Madrid, L., Diaz-Barrientos, E., & Madrid, F. (2002). Distribution of heavy metal contents of urban soils in parks of Seville. Chemosphere, 49, 1301–1309.CrossRefGoogle Scholar
  29. Mikanovà, O. (2006). Effects of heavy metals on some soil biological parameters. Journal of Geochemical Exploration, 88, 220–223.CrossRefGoogle Scholar
  30. Mikanovà, O., Kuba’t, J., & Nova’kova’, J. (2002). Some microbial characteristics and enzymatic activities in soils polluted with heavy metals. World Congress of Soil Science Bangkok, 792, 1–7, CD ROM.Google Scholar
  31. Otte, M. L., Haarsma, M. S., BroeKman, R. A., & Rozema, J. (1993). Relation between heavy metal concentrations in salt marsh plants and soil amended Brummer G.W. In the municipal refuse. Biology and Fertility of Soils, 14, 54–60.Google Scholar
  32. Papa, S., Curcio, E., Lombardi, A., D’Oriano, P., & Fioretto, A. (2002). Soil microbial activity in three evergreen oak (Quercus ilex) woods in a Mediterranean area. In A. Violante, P. M. Huang, J. M. Bollag, & L. Gianfreda (Eds.), Soil mineral-organic matter-microorganisms interactions and ecosystem health (pp. 229–237). Amsterdam: Elsevier.CrossRefGoogle Scholar
  33. Perucci, P. (1993). Enzyme activity and microbial biomass in a field soil amended with municipal refuse. Biology and Fertility of Soils, 14, 61–74.Google Scholar
  34. Pinzari, E., Trinchera, A., & Benedetti, A. (2000). Indicatori della qualità del suolo in ecosistemi mediterranei. Memorie di Scienze Fisiche e Naturali, 24, 299–308.Google Scholar
  35. Rutigliano, F. A., Alfani, A., Batoli, G., Fierro, A. R., Castaldi, S., Cotrufo, M. F., et al. (1993). Carico di metalli pesanti e attività enzimatica in suoli dell’area urbana di Napoli. Studi Sassaresi, XXXV(2°), 451–460.Google Scholar
  36. Schinner, F., & Von Mersi, W. (1990). Xylanase, CM- cellulase and invertase activity in soil: An improved method. Soil Biology and Biochemistry, 22, 511–515.CrossRefGoogle Scholar
  37. Speir, T. W., Ross, D. J., Feltham, C. W., Orchard, V. A., & Yeates, G. (1992). Assessment of the feasibility of using CCA (copper, chromium and arsenic)-treated and boric acid-treated sawdust as soil amendments. II. Soil biochemical and biollogical properties. Plant and Soil, 142, 249–258.CrossRefGoogle Scholar
  38. Speir, T. W., Kettles, H. A., Parshotam, A., Searle, P. L., & Vlaar, L. N. C. (1995). A simple kinetic approach to derive the ecological dose value, ED50, for the assessment of Cr(VI) toxicity to biological properties. Soil Biology and Biochemistry, 27, 801–810.CrossRefGoogle Scholar
  39. Tabatabai, M. A. (1982). Soil enzymes. In A. L. Page, E. M. Miller, & D. R. Keeney (Eds.), Methods of soil analysis, part 2, chemical and microbiological properties (pp. 903–947). Madison, WI: American Society of Agronomy.Google Scholar
  40. Tabatabai, M. A., & Bremner, J. M. (1969). Use of p-nitrophenil phosphate for assay of soil phosphatase activity. Soil Biology and Biochemistry, 1, 301–307.CrossRefGoogle Scholar
  41. Tyler, G. (1984). The impact of heavy metal pollution on forests: A case study of Gusum, Sweden. Ambio, 13(1), 18–24.Google Scholar
  42. Tyler, G., Pahlsson, A., Bengtsson, G., Bååth, E., & Tranvik, L. (1989). Heavy metal ecology of terrestrial plants, microorganism and invertebrates. Water, Air and Soil Pollution, 47, 189–215.CrossRefGoogle Scholar
  43. Vance, E. D., Brookes, P. C., & Jenkinson, D. S. (1987). Microbial biomass measurement in forest soils: The use of chloroform fumigation-incubation method in strongly acid soils. Soil Biology and Biochemistry, 19, 697–702.CrossRefGoogle Scholar
  44. Wong, C. S. C., Li, X. D. (2004). Pb contamination and isotopic composition of urban soils in Hong Kong. Science of Total Environment, 319, 185–195.CrossRefGoogle Scholar
  45. Yang, Y., Campbell, C. D., Clark, L., Cameron, C. M., Paterson, E. (2006). Microbial indicators of heavy metal contamination in urban and rural soils. Chemosphere, 63, 1942–1952.CrossRefGoogle Scholar
  46. Yeates, G. W., Orchard, V. A., Speir, T. W., Hunt, J. L., & Hermans, M. C. C. (1994). Reduction in soil biological activity following pasture contamination by copper, chromium and arsenic timber preservative. Biology and Fertility of Soils, 18, 200–208.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • S. Papa
    • 1
  • G. Bartoli
    • 1
  • A. Pellegrino
    • 1
  • A. Fioretto
    • 1
  1. 1.Dipartimento di Scienze della VitaSeconda Università di NapoliCasertaItaly

Personalised recommendations