Skip to main content

Advertisement

Log in

Microbial activities and trace element contents in an urban soil

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Soil biological properties are influenced by trace metals. The main sources of these pollutants in the urban areas are industrial plants, power stations, domestic heating systems and motor vehicles. The aim of this work was to evaluate, in relation to distance from urban roads, soil trace metal concentrations (Pb, Cu, Cr, Cd and V) and their influence on C-microbial biomass as well as on soil respiration and enzyme activities (phosphatase glucosidase, galactosidase, xylanase, cellulase, trealase, protease and invertase). The samplings were carried out at four sites, along a route that goes from Giannone Street to Passionisti Street, two heavily travelled roads at two different times of the year (spring and autumn). Heavy metal contents and microbial activities were highest at the sites near the roads. The highest values of microbial activities were found in the inner site; here, on the contrary, the lowest concentrations of heavy metals were measured. Significant and negative correlations were found between microbial activity and heavy metal contents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Aceves, M. B., Grace, C., Hart, M., Lin, Q., & Brookes, P. C. (1994). Laboratory manual of the soil microbial biomass group (pp. 8, 9). Harpenden: Rothamsted Experimental Station, Soil Science Department.

  • Bååth, E., Arnebrandt, K., & Nordgren, A. (1991). Microbial biomass and ATP in smelter-polluted forest humus. Bullettin of Environmental Contaminant and Toxicology, 47, 278–282.

    Article  Google Scholar 

  • Bardgett, R. D., Speir, T. W., Ross, D. J., Yeates, G. W., & Kettles, H. A. (1994). Impact of pasture contamination by copper, chromium and arsenic timber preservative on soil microbial proprieties and nematodes. Biology and Fertility of Soils, 18, 71–79. doi:10.1007/BF00336448.

    Article  CAS  Google Scholar 

  • Belén Hinojosa, M., Carreira, J. A., Garcia-Ruiz, R., & Dick, R. P. (2004a). Soil moisture pre-treatment effects on enzyme activities as indicators of heavy metal-contaminated and reclaimed soils. Soil Biology & Biochemistry, 36, 1559–1568. doi:10.1016/j.soilbio.2004.07.003.

    Article  Google Scholar 

  • Belén Hinojosa, M., Garcia-Ruiz, R., Vinegla, B., & José Carreira, A. (2004b). Microbiological rates and enzyme activities as indicators of functionality in soils affected by the Aznalcòllar toxic spill. Soil Biology & Biochemistry, 36, 1637–1644. doi:10.1016/j.soilbio.2004.07.006.

    Article  Google Scholar 

  • Brookes, P. C., & McGrath, S. P. (1984). Effects of metal toxicity on the size of the soil microbial biomass. Journal of Soil Science, 35, 341–346. doi:10.1111/j.1365-2389.1984.tb00288.x.

    Article  CAS  Google Scholar 

  • Brookes, P. C., Landman, A., Pruden, G., & Jenkinson, D. S. (1985). Chloroform fumigation and the release of soil nitrogen: A rapid direct extraction method for measuring microbial biomass nitrogen in soil. Soil Biology & Biochemistry, 17, 837–842. doi:10.1016/0038-0717(85)90144-0.

    Article  CAS  Google Scholar 

  • Dell’Agnola, G., Nannipieri, P., & Nardi, S. (1993). Sostanza organica e molecole umiche. In Patron (Ed.), Ciclo della sostanza organica nel suolo (pp. 21–39). Bologna: Aspetti agronomici, chimici, ecologici, selvicolturali.

  • Domsch, K. H. (1991). Status and perspectives of side-effect testing. Toxicological and Environmental Chemistry, 30, 147. doi:10.1080/02772249109357649.

    Article  CAS  Google Scholar 

  • Eivazi, F., & Tabatabai, M. A. (1977). Phosphatases in soils. Soil Biology & Biochemistry, 9, 167–172. doi:10.1016/0038-0717(77)90070-0.

    Article  CAS  Google Scholar 

  • Eivazi, F., & Tabatabai, M. A. (1988). Glucosidases and galattosidases in soils. Soil Biology & Biochemistry, 20, 601–606. doi:10.1016/0038-0717(88)90141-1.

    Article  CAS  Google Scholar 

  • Filip, Z. (2002). International approach to assessing soil quality by ecologically-related biological parameters. Agriculture Ecosystems & Environment, 88, 169–174. doi:10.1016/S0167-8809(01)00254-7.

    Article  Google Scholar 

  • Flieβbach, A., Martens, R., & Reber, H. H. (1994). Soil microbial biomass and microbial activity in soils treated with heavy metal contaminated sewage sludge. Soil Biology and Biochemistry, 26, 1201–1205.

    Article  Google Scholar 

  • Froment, A. (1972). Soil respiration in a mixed oak forest. Oikos, 23, 273–277.

    Article  Google Scholar 

  • Gadd, G. M. (1993). Interactions of fungi with toxic metals. New Phytologist, 124, 25–60, Transley Rewiew 47.

    Article  CAS  Google Scholar 

  • Ge, Y., Murray, P., & Hendershot, W. H. (2000). Trace metal speciation and bioavailability in urban soils. Environmental Pollution, 107, 137–144.

    Article  CAS  Google Scholar 

  • Gil-Sotres, F., Trasar-Cepeda, C., Leiro’ s, M. C., Seoane, S. (2005). Different approaches to evaluating soil quality using biochemical properties. Soil Biological and Biochemistry, 37, 877–887.

    Article  CAS  Google Scholar 

  • Giller, K. E., Witter, E., & McGrath, S. P. (1998). Toxicity of heavy metals to microorganisms and microbial processes in agricultural soils: a review. Soil Biology and Biochemistry, 30, 1389–1414.

    Article  CAS  Google Scholar 

  • Hattori, H. (1992). Influence of heavy metals on soil microbial activities. Soil Science and Plant Nutrition, 38, 93–100.

    CAS  Google Scholar 

  • Khan, M., & Scullion, J. (2000). Effect of soil on microbial responses to metal contamination. Environmental Pollution, 110, 115–125.

    Article  CAS  Google Scholar 

  • Kiem, R., & Kandeler, E. (1996). A simple method for determination of trealase activity. Microbiological Research, 152, 19–20.

    Google Scholar 

  • Kuperman, R. G., & Carreiro, M. M. (1997). Soil heavy metal concentrations, microbial biomass and enzyme activities in contaminated grassland ecosystem. Soil Biology and Biochemistry, 29(2), 179–190.

    Article  CAS  Google Scholar 

  • Ladd, J. N., & Butler, J. H. (1972). Short-term assay of soil proteolytic enzyme activities using protein and dipeptide derivates as substrates. Soil Biology and Biochemistry, 4, 19–30.

    Article  CAS  Google Scholar 

  • Legislative decree (1999). D.M.(Ambiente) 25 Ottobre 1999 n.471. In G.U. n.293, 15 Dicembre 1999.

  • Leita, L., De Nobili, M., Muhlbachova, G., Mondini, C., Marchiol, L., & Zerbi, G. (1995). Bioavailability and effects of heavy metals on soil microbial biomass survival during laboratory incubation. Biology and Fertility of Soils, 19, 103–108.

    Article  CAS  Google Scholar 

  • Li, X., Poon, C. S., Liu, P. S. (2001). Heavy metal contamination of urban soils and street dusts in Hong Kong. Applied Geochemistry, 16, 1361–1368.

    Article  CAS  Google Scholar 

  • Lindsay, W. L., & Norvell, W. A. (1978). Development of a DTPA micronutrient soil test for zinc, iron, manganese, and copper. Soil Science Society of America Journal, 42, 421–428.

    CAS  Google Scholar 

  • Madrid, L., Diaz-Barrientos, E., & Madrid, F. (2002). Distribution of heavy metal contents of urban soils in parks of Seville. Chemosphere, 49, 1301–1309.

    Article  CAS  Google Scholar 

  • Mikanovà, O. (2006). Effects of heavy metals on some soil biological parameters. Journal of Geochemical Exploration, 88, 220–223.

    Article  Google Scholar 

  • Mikanovà, O., Kuba’t, J., & Nova’kova’, J. (2002). Some microbial characteristics and enzymatic activities in soils polluted with heavy metals. World Congress of Soil Science Bangkok, 792, 1–7, CD ROM.

    Google Scholar 

  • Otte, M. L., Haarsma, M. S., BroeKman, R. A., & Rozema, J. (1993). Relation between heavy metal concentrations in salt marsh plants and soil amended Brummer G.W. In the municipal refuse. Biology and Fertility of Soils, 14, 54–60.

    Google Scholar 

  • Papa, S., Curcio, E., Lombardi, A., D’Oriano, P., & Fioretto, A. (2002). Soil microbial activity in three evergreen oak (Quercus ilex) woods in a Mediterranean area. In A. Violante, P. M. Huang, J. M. Bollag, & L. Gianfreda (Eds.), Soil mineral-organic matter-microorganisms interactions and ecosystem health (pp. 229–237). Amsterdam: Elsevier.

    Chapter  Google Scholar 

  • Perucci, P. (1993). Enzyme activity and microbial biomass in a field soil amended with municipal refuse. Biology and Fertility of Soils, 14, 61–74.

    Google Scholar 

  • Pinzari, E., Trinchera, A., & Benedetti, A. (2000). Indicatori della qualità del suolo in ecosistemi mediterranei. Memorie di Scienze Fisiche e Naturali, 24, 299–308.

    Google Scholar 

  • Rutigliano, F. A., Alfani, A., Batoli, G., Fierro, A. R., Castaldi, S., Cotrufo, M. F., et al. (1993). Carico di metalli pesanti e attività enzimatica in suoli dell’area urbana di Napoli. Studi Sassaresi, XXXV(2°), 451–460.

    Google Scholar 

  • Schinner, F., & Von Mersi, W. (1990). Xylanase, CM- cellulase and invertase activity in soil: An improved method. Soil Biology and Biochemistry, 22, 511–515.

    Article  CAS  Google Scholar 

  • Speir, T. W., Ross, D. J., Feltham, C. W., Orchard, V. A., & Yeates, G. (1992). Assessment of the feasibility of using CCA (copper, chromium and arsenic)-treated and boric acid-treated sawdust as soil amendments. II. Soil biochemical and biollogical properties. Plant and Soil, 142, 249–258.

    Article  CAS  Google Scholar 

  • Speir, T. W., Kettles, H. A., Parshotam, A., Searle, P. L., & Vlaar, L. N. C. (1995). A simple kinetic approach to derive the ecological dose value, ED50, for the assessment of Cr(VI) toxicity to biological properties. Soil Biology and Biochemistry, 27, 801–810.

    Article  CAS  Google Scholar 

  • Tabatabai, M. A. (1982). Soil enzymes. In A. L. Page, E. M. Miller, & D. R. Keeney (Eds.), Methods of soil analysis, part 2, chemical and microbiological properties (pp. 903–947). Madison, WI: American Society of Agronomy.

    Google Scholar 

  • Tabatabai, M. A., & Bremner, J. M. (1969). Use of p-nitrophenil phosphate for assay of soil phosphatase activity. Soil Biology and Biochemistry, 1, 301–307.

    Article  CAS  Google Scholar 

  • Tyler, G. (1984). The impact of heavy metal pollution on forests: A case study of Gusum, Sweden. Ambio, 13(1), 18–24.

    CAS  Google Scholar 

  • Tyler, G., Pahlsson, A., Bengtsson, G., Bååth, E., & Tranvik, L. (1989). Heavy metal ecology of terrestrial plants, microorganism and invertebrates. Water, Air and Soil Pollution, 47, 189–215.

    Article  CAS  Google Scholar 

  • Vance, E. D., Brookes, P. C., & Jenkinson, D. S. (1987). Microbial biomass measurement in forest soils: The use of chloroform fumigation-incubation method in strongly acid soils. Soil Biology and Biochemistry, 19, 697–702.

    Article  CAS  Google Scholar 

  • Wong, C. S. C., Li, X. D. (2004). Pb contamination and isotopic composition of urban soils in Hong Kong. Science of Total Environment, 319, 185–195.

    Article  CAS  Google Scholar 

  • Yang, Y., Campbell, C. D., Clark, L., Cameron, C. M., Paterson, E. (2006). Microbial indicators of heavy metal contamination in urban and rural soils. Chemosphere, 63, 1942–1952.

    Article  CAS  Google Scholar 

  • Yeates, G. W., Orchard, V. A., Speir, T. W., Hunt, J. L., & Hermans, M. C. C. (1994). Reduction in soil biological activity following pasture contamination by copper, chromium and arsenic timber preservative. Biology and Fertility of Soils, 18, 200–208.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Papa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Papa, S., Bartoli, G., Pellegrino, A. et al. Microbial activities and trace element contents in an urban soil. Environ Monit Assess 165, 193–203 (2010). https://doi.org/10.1007/s10661-009-0938-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-009-0938-1

Keywords

Navigation