Environmental Monitoring and Assessment

, Volume 165, Issue 1–4, pp 113–123 | Cite as

Barium concentrations and speciation in mineral natural waters of central Romania

  • Alin Tudorache
  • Constantin Marin
  • Irinel Adriana Badea
  • Luminiţa Vlădescu


This paper reports the results obtained for the determination of Ba concentrations in mineral groundwater samples collected from drilled outlets located in the counties of Covasna and Harghita (34 sampling points), in five expeditions (spring, summer, and autumn), during 3 years: 2005, 2006, and 2007. The experimental data show that there are some sampling sites in which the barium concentration exceeds 1 mg/L, which is the maximum concentration admitted for barium. These mineral natural waters could be used only for therapeutic purposes. All other analyzed natural mineral waters are proper as both drinking and therapeutic water. By means of a principal component analysis a statistical approach was performed, using the data obtained during those analyzing processes. The distribution of the water saturation indexes with respect to a series of mineral species (alstonite, barite, barytocalcite, nitrobarite, sanbornite, and witherite) suggests that barium tends to remain in solution as ionic species in different concentrations and to be further carried away as such.


Barium concentration Speciation Mineral natural waters Central Romania 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Apepelo, C. A. J. & Postama, D. (1993). Geochemistry, groundwater and pollution. A. A. Rotterdam: Balkema Publishers.Google Scholar
  2. American Society for Testing and Materials ASTM-D516-07 (1995). Standard test method for sulfate ion in water. American Society for Testing and Materials (ASTM).Google Scholar
  3. Babaua, G. R., Stoica, A. I., Capota, P. & Baiulescu, G. E. (2003). The content of some microelements in mineral waters from Covasna and Harghita Romanian districts. Environmental Geology, 45, 58–64. doi: 10.1007/s00254-003-0846-6.CrossRefGoogle Scholar
  4. Baiulescu, G. E., Fazakas, J., Manoliu, C. & Tomi, B. (1972). Determinarea continutului in litiu si mangan din unele ape minerale din judetele Covasna si Harghita prin spectrometrie de absorbtie atomica. Revista de Chimie (Chimie Analitica), 3, 184–186.Google Scholar
  5. Bandorick, B. W., Roberts, J. C. & John St., R. (2006). Remediation of barium, bicarbonate and alkalinity in ground water. United States Patent 7081204.Google Scholar
  6. Bebek, M., Mitko, K. & Kwapulinsk, J. (1996). Determination of aluminium, barium, molybdenum, scandium, beryllium, titanium, vanadium, fluoride and boron in highly salinated waters. Water Science and Technology, 33(6), 349–356. doi: 10.1016/0273-1223(96)00286-7.CrossRefGoogle Scholar
  7. Bosnak, C. P. & Graosser, Z. A. (1996). The analysis of dinking water and bottled water by flame AA and GFAA. Atomic Spectroscopy, 17(6), 218–224.Google Scholar
  8. Brenniman, G. R., Kojola, W. H., Levy, P. S., Carnow, B. W. & Nemekata, T. (1981). High barium levels in public drinking water and its association with elevated blood pressure. Archives of Environmental &Occupational Health, 36, 28–32.Google Scholar
  9. Brenniman, G. R., Nemekata, T., Kojola, W. H., Carnow, B. W. & Levy, P. S. (1979). Cardiovascular disease death rates in communities with elevated levels of barium in drinking water. Environmental Research, 20, 18–324. doi: 10.1016/0013-9351(79)90007-0.CrossRefGoogle Scholar
  10. Camero, R. M. & Alvarado, J. (2000). Determination of carbide-forming metals, chromium and barium, by graphite furnace atomic absorption spectrometry using a tungsten coil platform. Spectrochimica Acta. Part B, Atomic Spectroscopy, 55(7), 875–881. doi: 10.1016/S0584-8547(00)00179-8.CrossRefGoogle Scholar
  11. Clechet, P. & Eschalier, G. (1984). Determination of trace of mercury and barium in mineral-containing water by selective retention on ion-exchange papers and X-ray fluorescence spectrometry. Analytica Chimica Acta, 154, 295–299. doi: 10.1016/S0003-2670(00)85562-2.CrossRefGoogle Scholar
  12. European Union (2003). Commission Directive 2003/40/EC establishing the list, concentration limits and labeling requirements for the constituents of natural mineral waters and the conditions for using ozone-enriched air for the treatment of natural mineral waters and spring waters. Official Journal of the European Union, L126, 34–39.Google Scholar
  13. Dehairs, F., De Bondt, M., Baeyens, W., Van Den Winkel, P. & Hoenig, M. (1987). Determination of barium in sea water by cation-exchange separation and electrothermal atomic absorption spectrometry. Anaytica Chimica Acta, 196, 33–40.CrossRefGoogle Scholar
  14. Edbon, L., Hutton, R. C. & Ottaway, J. M. (1978). Determination of barium in potable waters and sediments by carbon-furnace atomic emission spectrometry. Analytica Chimica Acta, 96(1), 63–67.CrossRefGoogle Scholar
  15. Feru, A. (2004). Bottled natural mineral waters in Romania. Environmental Geology, 46, 670–674.CrossRefGoogle Scholar
  16. Hartmann, J., Berner, Z., Stüben, D. & Henze, N. (2005). A statistical procedure for the analysis of seismotectonically induced hydrochemical signals: a case study from the Eastern Carpathians, Romania. Tectonophysics, 405, 77–98.CrossRefGoogle Scholar
  17. Hassan, S. S. M., Saleh, B. M., Abdel Gaber, A. A. & Abdel Kream, A. N. (2003). DDB liver drug as a novel ionophore for potentiometric barium (II) membrane sensor. Talanta, 59(1), 161–166.CrossRefGoogle Scholar
  18. ICH Q2A (1994). Validation of analytical methods.Google Scholar
  19. ICH Q2B (1996). Analytical validation methodology.Google Scholar
  20. Johnson, K. E., Wayne Yerhoff, F., Robinson, J. & Dehm, C. (1983). Determination of barium at ng ml − 1 levels by flame emission spectrometry after ion-exchange separation from 1000-fold amounts of calcium. Analytica Chimica Acta, 149, 129–135.CrossRefGoogle Scholar
  21. Jones, P., Foulkes, M. & Paull, B. (1994). Determination of barium and strontium in calcium-containing matrices using high-performance chelating ion chromatography. Journal of Chromatography B, 673(2), 173–179.CrossRefGoogle Scholar
  22. Klinkhammer, G. P. & Chan, L. H. (1990). Determination of barium in marine waters by isotope dilution inductively coupled plasma mass spectrometry. Analytica Chimica Acta, 232, 323–329.CrossRefGoogle Scholar
  23. Kopp, S. J., Perry, H. M., Feliksik, J. M., Erlanger, M. & Perry, E. F. (1985). Cardiovascular dysfunction and hypersensitivity to sodium pentobarbital induced by chronic barium chloride ingestion. Toxicology and Applied Pharmacology, 77, 303–314.CrossRefGoogle Scholar
  24. Lagas, P. (1978). Determination of beryllium, barium, vanadium and some other elements in water by atomic absorption spectrometry with electrothermal atomization. Anaytica Chimica Acta, 98(2), 261–267.CrossRefGoogle Scholar
  25. Macka, M., Paull, B., Andersson, P. & Haddad, P. R. (1997). Determination of barium and strontium by capillary zone electrophoresis using an electrolyte containing Sulfonazo III. Journal of Chromatography A, 767(1-2), 303–310.CrossRefGoogle Scholar
  26. Mackereth, F. J. H., Heron, J. & Talling, J. F. (1978). Water analysis: Some revised methods for limnologists. Ambleside: Freshwater Biological Association.Google Scholar
  27. Manna, F., Chimenti, F., Bolasco, A. & Fulvi, A. (1992). Study on selective quantitative determination of barium by Sulphonazo III in complex matrices. Talanta, 39(7), 875–878.CrossRefGoogle Scholar
  28. Othman, A. M., El-Shahawi, M. S. & Abdel-Azeem, M. (2006). A novel barium polymeric membrane sensor for selective determination of barium and sulphate ions based on the complex ion associate barium (II)-Rose Bengal as neutral ionophore. Analytica Chimica Acta, 555(2), 322–328.CrossRefGoogle Scholar
  29. Parham, H., & Mobarakzadeh, M. (2002). Solvent extraction–spectrophotometric determination of trace amounts of ammonium, barium and potassium in a mixture by dicyclohexyl-18-crown-6 and orange II. Talanta, 58(2), 281–287.CrossRefGoogle Scholar
  30. Pakalns, P., & Flynn, W. W. (1967). Spectrophotometric determination of traces of silicon by an extraction method. Analytica Chimica Acta, 38(3), 403–414.CrossRefGoogle Scholar
  31. Papp, D. C., & Niţoi, E. (2006). Isotopic composition and origin of mineral and geothermal waters from Tuşnad Băi Spa, Harghita Mountains, Romania. Journal of Geochemical Exploration, 89, 314–317.CrossRefGoogle Scholar
  32. Parkhust, D. L., & Appelo, C. A. J. (1999). Users’ guide to PHREEQC—a computer program for speciation, reaction-path, 1D-transport and inverse geochemical calculations (pp. 99–4259). U.S. Geological Survey Water Resources Investigations Report.Google Scholar
  33. Pitzer, K. S. (1991). Activity coefficients in electrolyte solutions (pp. 75–154). Florida: Boca Raton: CRC Press, Inc.Google Scholar
  34. Sassani, D. C., & Shock, E. L. (1992). Estimation of standard partial molal entropies of aqueous ions at 25°C and 1 bar. Geochimica et Cosmochimica Acta, 56, 3895–3908.CrossRefGoogle Scholar
  35. Seracu, D. (1989). Indreptar de Chimie Analitica, Bucurest, Editura Tehnica.Google Scholar
  36. Shock, E. L., Helgeson, H. C., & Sverjensky, D. A. (1989). Calculation of the thermodynamic and transport properties of aqueous species at high pressures and temperatures. Standard partial molal properties of inorganic neutral species. Geochimica et Cosmochimica Acta, 53, 2157–2183.CrossRefGoogle Scholar
  37. Shock, E. L., Kirkham, D. H., & Flowers, G. C. (1981). Theoretical prediction of the thermodynamic behavior of aqueous electrolytes by high pressures and temperatures. IV. Calculation of activity coefficients, osmotic coefficients, and apparent molal and standard and relative partial molal properties to 600 degrees C and 5 kb. American Journal of Science, 281(10), 1249–1516.Google Scholar
  38. Stockinger, H. E. (1981). The metals. In: G. D. Clayton, F. E. Clayton (Eds.), Patty’s industrial hygiene and toxicology (pp. 1493–2060). New York: John Wiley.Google Scholar
  39. SR-ISO-9297 (2001). Water quality—Chloride content determination. Titration with silver nitrate using chromate as an indicator (Mohr Method). Romanian Standard. Collections of Standards ASRO.Google Scholar
  40. SR-ISO-9963-1(A99) (2002). Water quality—determination of alkalinity. Part 1: determination of total and permanent alkalinity. Romanian Standard. Collections of Standards ASRO.Google Scholar
  41. SR-ISO-9390 (2000). Water quality. Determination of the borate. Spectrometric method with Azometine H. Romanian Standard. Collections of Standards ASRO.Google Scholar
  42. Vaselli, O., Minissale, A., Tassi, F., Magro, G., Seghedi, I., Ioane, D., et al. (2002). A geochemical traverse across the Eastern Carpathians (Romania): constraints on the origin and evolution of the mineral water and gas discharges. Chemical Geology, 182, 637–654.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Alin Tudorache
    • 1
  • Constantin Marin
    • 2
  • Irinel Adriana Badea
    • 1
  • Luminiţa Vlădescu
    • 1
  1. 1.Faculty of ChemistryUniversity of BucharestBucharestRomania
  2. 2.Emil Racoviţă Institute of Speology, of the Romanian AcademyBucharestRomania

Personalised recommendations