Environmental Monitoring and Assessment

, Volume 164, Issue 1–4, pp 617–630 | Cite as

Review of indicators and field methods for monitoring biodiversity within national forest inventories. Core variable: Deadwood

  • Jacques Rondeux
  • Christine Sanchez


Deadwood is one of the four elements taken into account in this review of indicators and field methods and is often considered as a key indicator of forest biodiversity. We have analysed the main types of surveys and have realised how greatly the needs and constraints used to monitor deadwood can vary among them. For instance, classical National Forest Inventories usually tend to avoid time-consuming collecting methods. In the wide variety of existing definitions of deadwood, such inventories require simple and clear definitions, especially in terms of quantified thresholds. Thus, deadwood is properly described by characterising several components, such as snags, logs, stumps, branches and fine woody debris. Deadwood sampling methods alter depending on the different components and dimensions considered (standing dead trees, lying dead trees and branches, etc. assessed quantitatively). Attributes such as tree species and stage of decay are used mainly to qualify the deadwood components. The deadwood volume estimations are usually based on classical approaches already applied to living or felled trees: volume equations and/or formulas giving the volumes of common geometric solids. The purpose of this paper is to focus on different deadwood assessment techniques and to provide the information necessary to identify the most relevant methods for collecting deadwood data. The latter is used to build indicators that characterise the evolution of forest biodiversity at the scale of large forest territories.


Deadwood Deadwood attributes Deadwood components Forest biodiversity National forest inventory Sampling methods Volume calculations 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Albrecht, L. (1991). Die Bedeutung des toten Holzes im Wald (pp. 106–113). Forstw. Cbl.Google Scholar
  2. Alexander, K. N. A. (2003). The British saproxylic invertebrate fauna. In Proceedings of the second pan-European conference on saproxylic beetles.Google Scholar
  3. Bate, L. J., Torgersen, T. R., Garton, E. O., & Wisdom, M. J. (2002). Accuracy and efficiency of methods to sample logs for wildlife research and management. Electronic version available at: [2005-11-16].
  4. Bobiec, A. (2002). Living stands and deadwood in the Bialowieza forest: Suggestions for restoration management. Forest Ecology and Management, 165, 125–140. doi: 10.1016/S0378-1127(01)00655-7.CrossRefGoogle Scholar
  5. Böhl, J., & Brändli, U.-B. (2007). Deadwood volume assessment in the third Swiss Forest inventory: Methods and first results. European Journal of Forest Research, 126, 449–457.CrossRefGoogle Scholar
  6. Broadmeadow, M. S. J., Matthews, R. W., Mackie, E., Wilkinson, M., Benhams, G., & Harris, K. (2005). Survey methods for Kyoto protocol monitoring and verification of UK forest carbon stocks. In R. Milne, & D. C. Mobbs (Eds.), Emissions by sources and romovals by sinks due to land use, land use change and forestry activities. Report June 2005 (p. 6). United Kingdom: Department for the Environment, Food and Rural Affairs, Global Atmosphere Division.Google Scholar
  7. Bruciamacchie, M. (2005). Méthodes d’échantillonnage du bois mort. In Vallaury et al. (Coord.), Bois mort et à cavités, une clef pour des forêts vivantes (pp. 227–235). Paris: Lavoisier TEC and DOC.Google Scholar
  8. Bunnel, F. L., Boyland, M., & Wind, E. (2002). How should we spatially distribute dying and deadwood (pp. 739–752). USDA For. Serv. Gen. Tech. Rep. PSW-GTR 181.Google Scholar
  9. Bursell, J. (2002). Winter abundance of hole-nesting birds in natural and managed woods of Zealand (Denmark). Acta Ornithalogica Warsaw, 37(2), 67–74.Google Scholar
  10. Chirici, G., Corona, P., & Marchetti, M. (2003). Proposal of deadwood monitoring. Protocol for ForestBiota.Google Scholar
  11. Chojnacky, D., & Heath, L. (2002). Estimating down deadwood from FIA forest inventory variables in Maine. Environmental Pollution, 116, S25–S30. doi: 10.1016/S0269-7491(01)00243-3.CrossRefGoogle Scholar
  12. Christensen, M., Hahn, K., Mountford, E. P., Ódor, P., Standovár, T., Rozenbergar, D., et al. (2005). Deadwood in European beech (Fagus sylvatica) forest reserves. Forest Ecology and Management, 210, 267–182. doi: 10.1016/j.foreco.2005.02.032.CrossRefGoogle Scholar
  13. Dagnelie, P., Palm, R., Rondeux, J., & Thill, A. (1999). Tables de cubage des arbres et des peuplements forestiers (3rd ed., 148 pp.). Gembloux, Belgium: Les Presses Agronomiques de Gembloux.Google Scholar
  14. Di Cosmo, L., Gschwantner, T., Robert, N., & Lanz, A. (2005). Scientific report from the short-term scientific mission carried out from 7–24 March 2005 at the Swiss Federal Institute for Forest, Snow and Landscape research (SWL) Birmensdorf. COST Action E43, Working Group 1.Google Scholar
  15. Erickson, J. L., & West, S. T. D. (2003). Association of Bats with local structures and landscape features of forested stands in western Oregon and Washington. Biological Conservation, 109(1), 95–102.CrossRefGoogle Scholar
  16. Ferris, R., Peace, A. J., & Newton, A. C. (2000). Macrofungal communities of lowland Scots pine (Pinus sylvestris L.) and Norway Spruce (Picea abies (L.) Karsten) plantations in England: Relationships with site factors and stand structure. Forest Ecology and Management, 131, 255–267. doi: 10.1016/S0378-1127(99)00218-2.CrossRefGoogle Scholar
  17. Ferris-Kaan, R., Lonsdale, D., & Winter, T. (1993). The conservation management of deadwood. Farnham: Forestry Commission (Research Information Note No 241).Google Scholar
  18. Fridman, J., & Walheim, M. (2000). Amount, structure and dynamics of deadwood on managed forestland in Sweden. Forest Ecology and Management, 131, 23–36. doi: 10.1016/S0378-1127(99)00208-X.CrossRefGoogle Scholar
  19. Gove, J. H., Ducey, M. J., Stähl, G., & Ringvall, A. (2001). Point relascope sampling. A new way to assess downed coarse woody debris. Journal of Forestry, 99, 4–11.Google Scholar
  20. Green, P., & Peterken, G. F. (1997). Variation in the amount of deadwood in the woodlands of the Lower Wye Valley, UK in relation to the intensity of management. Forest Ecology and Management, 98, 229–238. doi: 10.1016/S0378-1127(97)00106-0.CrossRefGoogle Scholar
  21. Haase, V., Topp, W., & Zach, P. (1998). Eichen-Totholz im Wirtschaftswald als Lebensraum fur xylobionte Insekten, Z. Ökologie u. Naturschutz, 7, 137–153.Google Scholar
  22. Hamza, N., & Cluzeau, C. (2005). Évaluation du bois mort par l’inventaire forestier national: Situation et perspectives d’amélioration. In Vallaury et al. (Coord.), Bois mort et à cavités, une clef pour des forêts vivantes (pp. 253–261). Paris: Lavoisier TEC and DOC.Google Scholar
  23. Harmon, M. E., & Sexton, J. (1996). Guidelines for measurements of woody detritus in forest ecosystems. LTER network office publication n°20. Electronic version available at: [2005–10–25].
  24. Harmon, M. E., Franklin, J. F., Swanson, F. J., Sollins, P., Gregory, S. V., Lattin, J. D., et al. (1986). Ecology of coarse woody debris in temperate ecosystems. Advances in Ecological Research, 15, 133–302. doi: 10.1016/S0065-2504(08)60121-X.CrossRefGoogle Scholar
  25. Heilmann-Clausen, J., & Christensen, M. (2003). Fungal diversity on decaying beech logs—Implication for sustainable forestry. Biodiversity and Conservation, 12, 953–973.CrossRefGoogle Scholar
  26. Hochblicher, E., O’Sullivan, A., Van Hees, A., & Vandekerkhove, K. (2000). Recommendations for data collection in forest reserves with an emphasis on regeneration and stand structure (pp. 135–181). European Commission: COST Action E4, Forest Reserves Research Network.Google Scholar
  27. Humphrey, J. W., Davey, S., Peace, A. J., Ferris, R., & Harding, K. (2002). Lichens and bryophite communities of planted and semi-natural forests in Britain: The influence of site type, stand structure and deadwood. Biological Conservation, 107(2), 165–180. doi: 10.1016/S0006-3207(02)00057-5.CrossRefGoogle Scholar
  28. Hunter, M. L., Jr. (1990). Wildlife, forests and forestry: Principles of managing forests for biological diversity. Englewood Cliffs, New Jersey: Prentice-Hall.Google Scholar
  29. Idol, T. W., Figler, R. A., Pope, P. E., & Ponder, F. (2001). Characterization of coarse woody debris across a 100 year chronosequence of upland oak-hickory forests. Forest Ecology and Management, 149, 153–161. doi: 10.1016/S0378-1127(00)00536-3.CrossRefGoogle Scholar
  30. Kirby, K. J., Reid, C. M., Thomas, R. C., & Goldsmith, F. B. (1998). Preliminary estimates of fallen deadwood and standing dead trees in managed and unmanaged forests in Britain. Journal of Applied Ecology, 35, 148–155. doi: 10.1046/j.1365-2664.1998.00276.x.CrossRefGoogle Scholar
  31. Kirby, K. J., Webster, S. D., & Antczak, A. (1991). Effects of forest management on stand structure and the quantity of fallen deadwood: Some British and Polish examples. Forest Ecology and Management, 43, 167–174. doi: 10.1016/0378-1127(91)90083-8.CrossRefGoogle Scholar
  32. Knapp, E. E., Keeley, J. E., Ballenger, E. A., & Brennan, T. J. (2005). Fuel reduction and coarse woody debris dynamics with early season and late season prescribed fire in Sierra Nevada mixed conifer forest. Forest Ecology and Management, 208, 383–397. doi: 10.1016/j.foreco.2005.01.016.CrossRefGoogle Scholar
  33. Köhler, F. (2000). Totholzkäfer in naturwaldzellen des nördlichen Rheinland. In Naturwaldzellen teil VII, schriftreihe der landesanstalt für ökologie, bodenordnung und forsten/landesamt für agarordnung nordrhein-westfalen band (Vol. 18, p. 352).Google Scholar
  34. Komonen, A. (2003). Hotspots of insect diversity in Boreal forests. Conservation Biology, 17(4), 976–981. doi: 10.1046/j.1523-1739.2003.02076.x.CrossRefGoogle Scholar
  35. Krankina, O. N., Harmon, M. E., Kukuev, Y. A., Treyfeld, R. F., Kashpor, N. N., Kresnov, V. G., et al. (2002). Coarse woody debris in forest regions of Russia. Canadian Journal of Forest Research, 32(5), 768–778. doi: 10.1139/x01-110.CrossRefGoogle Scholar
  36. Kruys, N., & Jonsson, B. G. (1999). Fine woody debris is important for species richness on logs in managed boreal spruce forests of northern Sweden. Canadian Journal of Forest Research, 29(8), 1295–1299. doi: 10.1139/cjfr-29-8-1295.CrossRefGoogle Scholar
  37. Lecomte, H., & Rondeux, J. (2007). Inventaire permanent des ressources forestières de Wallonie. Guide méthodologique (194 pp.). Gembloux, Belgium: Gembloux Agricultural University.Google Scholar
  38. Martikainen, P., Siitonen, J., Punttila, P., Kaila, L., & Rauh, J. (2000). Species richness of Coleoptera in mature managed and old-growth boreal forests in southern Finland. Biological Conservation, 94, 199–209. doi: 10.1016/S0006-3207(99)00175-5.CrossRefGoogle Scholar
  39. Mc Rae, D. J., Alexander, M. E., & Stocks, B. J. (1979). Measurement and description of fuels and fire behavior on prescribed burns: A handbook, Canadian forestry service report O-X-287 (44 pp.). Sault Ste Marie, Ontario: Great lakes Forest Research Centre.Google Scholar
  40. Möller, G. (1994). Alt- und Totholzlebensraüme-Ökologie, Gefährdungssituation, schutzmabnahmen. Beitr. Forstwirtsch. Landschaftspfl., 28(1), 7–15.Google Scholar
  41. Mountford, E. (2002). Fallen deadwood levels in the near-natural beech forest at La Tillaie reserve, Fontainebleau, France. Forestry, 75, 203–208. doi: 10.1093/forestry/75.2.203.CrossRefGoogle Scholar
  42. Naesset, E. (1999). Relationship between relative wood density of Picea abies logs and simple classifications systems of decayed coarse woody debris. Scandinavian Journal of Forest Research, 14, 454–461. doi: 10.1080/02827589950154159.CrossRefGoogle Scholar
  43. Noorden, B., Götmark, F., Tönnberg, M., & Ryberg, M. (2004). Deadwood in semi-natural temperate broadleaved woodland: Contribution of coarse and fine deadwood, attached deadwood and stumps. Forest Ecology and Management, 194, 235–248. doi: 10.1016/j.foreco.2004.02.043.CrossRefGoogle Scholar
  44. Parminter, J. (1998). Coarse woody debris sampling intensity considerations. Electronic version available at: [2005–09–09].
  45. Penttila, R., Siitonen, J., & Kuusinen, M. (2004). Polypore diversity in managed and old-growth boreal Picea abies forests in southern Finland. Biological Conservation, 117, 271–283. doi: 10.1016/j.biocon.2003.12.007.CrossRefGoogle Scholar
  46. Rondeux, J. (1999a). La mesure des arbres et des peuplements forestiers (522 pp.). Gembloux, Belgium: Presses agronomiques de Gembloux.Google Scholar
  47. Rondeux, J. (1999b). Forest inventories and biodiversity. Unasylva, 196, 35–41.Google Scholar
  48. Schuck, A., Meyer, P., Menke, N., Lier, M., & Lindner, M. (2004). Forest biodiversity indicator: Deadwood–A proposed approach towards operationalising the MCPFE indicator. In M. Marchetti (Ed.), Monitoring and indicators of forest biodiversity in Europe—From ideas to operationality. EFI proceedings no. 51 (pp. 49–77). European Forest Institute.Google Scholar
  49. Shiver, B. D., & Borders, B. E. (1996). Sampling techniques for forest resource inventory (356 pp.). New York: Wiley.Google Scholar
  50. Siitonen, et al. (2000). Coarse woody debris and stand characteristics in mature managed and old-growth boreal mesic forests in southern Finland. Forest Ecology and Management, 128, 211–225. doi: 10.1016/S0378-1127(99)00148-6.CrossRefGoogle Scholar
  51. Simila, M., Kouki, J., Monkkonen, M., Sippola, A. L., & Huhta, E. (2006). Co-variation and indicators, of species diversity: Can richness of forest-dwelling species be predicted in northern boreal forests? Ecological Indicators, 6, 686–700. doi: 10.1016/j.ecolind.2005.08.028.CrossRefGoogle Scholar
  52. Speight, M. C. D. (1989). Les invertébrés saproxyliques et leur conservation (69 pp.). Strasbourg, France: Conseil de l’Europe.Google Scholar
  53. Stokland, J. N., Tomter, S. M., & Söderberg, G. U. (2004). Development of deadwood indicators for biodiversity monitoring: Experiences from Scandinavia. In M. Marchetti (Ed.), Monitoring and indicators of forest biodiversity in Europe—From Ideas to Operationality. EFI proceedings no. 51 (pp. 207–226). European Forest Institute.Google Scholar
  54. Taake, K.-H. (1991). Zur Besiedlung von Althölzern und Fledermauskästen durch Waldfledermäuse. NZ NRW Seminarberichte, 10, 57–58.Google Scholar
  55. Utschik, H. (1991). Beziehungen zwischen totholzreichtum und vogelvielfalt in Wirtschaftswäldern. Forstw. Cbl., 110, 135–148. doi: 10.1007/BF02741248.CrossRefGoogle Scholar
  56. Warren, W. G., & Olsen, N. P. F. (1964). A line intersect technique for assessing logging waste. Forest Science, 10(3), 267–276.Google Scholar
  57. Woldendorp, G., Keenan, R. J., Barry, S., & Spencer, R. D. (2004). Analysis of sampling methods for coarse woody debris. Forest Ecology and Management, 198, 133–148. doi: 10.1016/j.foreco.2004.03.042.CrossRefGoogle Scholar
  58. Zielonka, T. (2006). Quantity and decay stages of coarse woody debris in old-growth subalpine spruice stands of the western Carpathians, Poland. Canadian Journal of Forest Research, 36, 2614–2622. doi: 10.1139/X06-149.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Unit of Forest and Nature ManagementGembloux Agricultural UniversityGemblouxBelgium

Personalised recommendations