Environmental Monitoring and Assessment

, Volume 164, Issue 1–4, pp 357–368 | Cite as

An assessment of restoration success to forests planted for ecosystem restoration in loess plateau, Northwestern China

  • Zhanbiao Yang
  • Hongxi Jin
  • Gang Wang


Using ecosystem attributes identified by the Society of Ecological Restoration International, we assessed three restoration projects in the loess plateau, northwestern China, including planting Larix principis-rupprechtii (LS) and Pinus tabulaeformis (PS) on shrubland, and planting L. principis-rupprechtii on open forest land (LO). The reestablishment of native species in LS and PS was poorer than LO because of the excessive stand density. Species diversity, seedling number, and seedling diversity were significantly higher in LO than in LS and PS. Soil nutrient was also significantly higher in the LO treatment. The vegetation composition, species diversity, and soil nutrient in LO, however, were more similar to these in the reference. Our results indicate that planting L. principis-rupprechtii on open forest land had accelerated the succession of the ecosystem for approximately 30 years. But the poor natural regeneration of L. principis-rupprechtii suggests that post-planting activities in LO are required after timber harvesting or the natural mortality of the L. principis-rupprechtii. Management operation such as selective thinning will be required in LS and PS to promote the true restoration of native species diversity in the future.


Restoration success Vegetation composition Species diversity Regeneration Soil nutrient 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Amezaga, I., & Onaindia, M. (1997). The effect of evergreen and deciduous coniferous plantations on the field layer and seed bank of native woodlands. Ecography, 20, 308–318. doi: 10.1111/j.1600-0587.1997.tb00375.x.CrossRefGoogle Scholar
  2. Anderson, J. M., & Ingram, J. S. (1993). Tropical soil biology and fertility: A handbook of methods, (2nd ed., pp. 30–40). Oxon: CAB International.Google Scholar
  3. Augusto, L., Dupouey, J. L., & Ranger, J. (2003). Effects of tree species on understory vegetation and environmental conditions in temperate forests. Annals of Science, 60, 823–831. doi: 10.1051/forest:2003077.CrossRefGoogle Scholar
  4. Barbier, S., Gosselin, F., & Balandier, P. (2008). Influence of tree species on understory vegetation diversity and mechanisms involved—A critical review for temperate and boreal forests. Forest Ecology and Management, 254, 1–15. doi: 10.1016/j.foreco.2007.09.038.CrossRefGoogle Scholar
  5. Bergelson, J. (1990). Life after death: site preemption by the remains of Poa annua. Ecology, 71, 2157–2165. doi: 10.2307/1938629.CrossRefGoogle Scholar
  6. Brothers, T. S. (1993). Fragmentation and edge effects in central Indiana old-growth forests. Natural Areas Journal, 13, 268–274.Google Scholar
  7. Davidson, E. A., Carvalho, C. J. R., & Vieira, I. C. G. (2004). Nitrogen and phosphorus limitation of biomass growth in a tropical secondary forest. Ecological Applications, 14, S150–S163. doi: 10.1890/01-6006.CrossRefGoogle Scholar
  8. Dodd, N. L., Schweinsburg, R. E., & Boe, S. (2006). Landscape-scale forest habitat relationships to tassel-eared squirrel populations: Implications for ponderosa pine forest restoration. Restoration Ecology, 14, 537–547. doi: 10.1111/j.1526-100X.2006.00165.x.CrossRefGoogle Scholar
  9. Ellsworth, J., Harrington, R., & Fownes, J. (2004). Seedling emergence, growth, and allocation of oriental bittersweet: Effects of seed input, seed bank, and forest floor litter. Forest Ecology and Management, 190, 255–264. doi: 10.1016/j.foreco.2003.10.015.CrossRefGoogle Scholar
  10. Emmer, I. M., Fanta, J., Kobus, A. T., Kooijman, A., Sevink, J., Fanta, J., et al. (1998). Reversing borealization as a means to restore biodiversity in Central-European mountain forests—An example from the Krkonoše mountains, Czech Republic. Biodiversity and Conservation, 7, 229–247. doi: 10.1023/A:1008840603549.CrossRefGoogle Scholar
  11. Facelli, J. M., & Pickett, S. T. A. (1991). Plant litter: Its dynamics and effects on plant community structure. Botanical Review, 57, 1–32. doi: 10.1007/BF02858763.CrossRefGoogle Scholar
  12. Harrington, C. A. (1999). Forests planted for ecosystem restoration or conservation. New Forests, 17, 175–190. doi: 10.1023/A:1006539910527.CrossRefGoogle Scholar
  13. Hill, M. O. (1992). Mixtures as habitats for plants. In M. G. R. Cannell, D. C. Malcolm, P. A. Robertson (Eds.), The ecology of mixed-species stands of trees (pp. 301–302). Oxford: Blackwell Scientific.Google Scholar
  14. Hobbs, R. J. (2007). Setting effective and realistic restoration goals: Key directions for research. Restoration Ecology, 15, 354–357. doi: 10.1111/j.1526-100X.2007.00225.x.CrossRefGoogle Scholar
  15. Jackson, M. L. (1968). Análisis Químico de Suelos (1st ed., pp. 125–127). Barcelona: Editorial Omega.Google Scholar
  16. Jennings, S. B., Brown, N. D., & Sheil, D. (1999). Assessing forest canopies and understorey illumination: Canopy closure, canopy cover and other measures. Forestry, 72, 59–73. doi: 10.1093/forestry/72.1.59.CrossRefGoogle Scholar
  17. Jia, G. M., Cao, J., Wang, C. Y., & Wang, G. (2005). Microbial biomass and nutrients in soil at the different stages of secondary forest succession in Ziwulin, northwest China. Forest Ecology and Management, 217, 117–125. doi: 10.1016/j.foreco.2005.05.055.CrossRefGoogle Scholar
  18. Jones, E. R., Wishnie, M. H., & Deago, J. (2004). Facilitating natural regeneration in Saccharum spontaneum (L.) grasslands within the Panama Canal Watershed: Effects of tree species and tree structure on vegetation recruitment patterns. Forest Ecology and Management, 191, 171–183. doi: 10.1016/j.foreco.2003.12.002.CrossRefGoogle Scholar
  19. Joret, G., & Hébert, J. (1955). Contribution à la détermination du besoin des sols en acide phosphorique. Ann Agron, 2, 233–299.Google Scholar
  20. Kirby, K. J. (1988). Changes in the ground flora under plantations on ancient woodland sites. Forestry, 61, 317–338. doi: 10.1093/forestry/61.4.317.CrossRefGoogle Scholar
  21. Lebreton, P., & Choisy, J. P. (1991). Avifaune et altérations forestières. III. Incidences avifaunistiques des aménagements forestiers: substitution Quercus/Pinus en milieu subméditerranéen. Bulletin d’écologie, 1, 213–220.Google Scholar
  22. Maret, M. P., & Wilson, M. V. (2005). Fire and litter effects on seedling establishment in western Oregon upland prairies. Restoration Ecology, 13, 562–568. doi: 10.1111/j.1526-100X.2005.00071.x.CrossRefGoogle Scholar
  23. McKee, K. L., & Faulkner, P. L. (2000). Restoration of biogeochemical function in mangrove forests. Restoration Ecology, 8, 247–259. doi: 10.1046/j.1526-100x.2000.80036.x.CrossRefGoogle Scholar
  24. Meyer, C. L., Sisk, T. D., & Covington, W. W. (2001). Microclimatic changes induced by ecological restoration of ponderosa pine forests in northern Arizona. Restoration Ecology, 9, 443–452. doi: 10.1046/j.1526-100X.2001.94013.x.CrossRefGoogle Scholar
  25. Murphy, J., & Riley, J. (1962). A modified single solution method for the determination of phosphate in natural waters. Analytica Chimica Acta, 27, 31–36. doi: 10.1016/S0003-2670(00)88444-5.CrossRefGoogle Scholar
  26. Ningxia Forestry Bureau National Reserve office, Ningxia Liupanshan National Natural Reserve management service (1989). Liupanshan ziranbaohuqu kexuekaocha (pp. 102–104). Yingchuan: Ningxia People Press (in Chinese).Google Scholar
  27. Peterson, G., Allen, C. R., & Holling, C. S. (1998). Ecological resilience, biodiversity, and scale. Ecosystems (New York, N.Y.), 1, 6–18. doi: 10.1007/s100219900002.Google Scholar
  28. Polyakova, O., & Aide, N. (2007). Impact of deciduous tree species on litterfall quality, decomposition rates and nutrient circulation in pine stands. Forest Ecology and Management, 253, 11–18. doi: 10.1016/j.foreco.2007.06.049.CrossRefGoogle Scholar
  29. Reay, S. D., & Norton, D. A. (1999). Assessing the success of restoration plantings in a temperate New Zealand forest. Restoration Ecology, 7, 298–308. doi: 10.1046/j.1526-100X.1999.72023.x.CrossRefGoogle Scholar
  30. Ruiz-Jaén, M. C., & Aide, T. M. (2005). Restoration success: How is it being measured? Restoration Ecology, 13, 569–577. doi: 10.1111/j.1526-100X.2005.00072.x.Google Scholar
  31. Rutigliano, F. A., Ascoli, R. D., De Santo, A. V. (2004). Soil microbial metabolism and nutrient status in a Mediterranean area as affected by plant cover. Soil Biology & Biochemistry, 36, 1719–1729. doi: 10.1016/j.soilbio.2004.04.029.CrossRefGoogle Scholar
  32. Saetre, P., Saetre, L. S., Brandtberg, P. O., Lundkvist, H., & Bengtsson, J. (1997). Ground vegetation composition and heterogeneity in pure Norway spruce and mixed Norway spruce–birch stands. Canadian Journal of Forest Research, 27, 2034–2042. doi: 10.1139/cjfr-27-12-2034.CrossRefGoogle Scholar
  33. Salinas, M. J., & Guirado, J. (2002). Riparian plant restoration in summer dry riverbeds of southeastern Spain. Restoration Ecology, 10, 695–702. doi: 10.1046/j.1526-100X.2002.01050.x.CrossRefGoogle Scholar
  34. Shannon, C. E. (1948). Mathematical theory of communication. The Bell System Technical Journal, 27, 379–423.Google Scholar
  35. Singh, A. N., Raghubanshi, A. S., & Singh, J. S. (2004). Comparative performance and restoration potential of two Albizia species planted on mine spoil in a dry tropical region. India Ecol Eng, 22, 123–140. doi: 10.1016/j.ecoleng.2004.04.001.CrossRefGoogle Scholar
  36. Society for Ecological Restoration International Science & Policy Working Group (SER) (2004). The SER international Primer on Ecological Restoration. Society for Ecological Restoration International, Tucson, Arizona. Retrieved 10 September 2007 from
  37. Sorenson, T. (1948). A method of establishing groups of equal amplitude in a plant based on similarity of species content and its applications to analysis of vegetation on Danish Commons. Boil Skr, 5, 1–34.Google Scholar
  38. Tsubuki, T., & Takizawa, T. (1996). Flight activities of Colias erate (Lepidoptera, Pieridae) in high and low altitudes. Transcontinental Lepidopteran Society of Japan, 47, 17–28.Google Scholar
  39. Vallauri, D. R., Aronson, J., & Barbero, M. (2002). An analysis of forest restoration 120 years after reforestation on badlands in the Southwestern Alps. Restoration Ecology, 10, 16–26. doi: 10.1046/j.1526-100X.2002.10102.x.CrossRefGoogle Scholar
  40. Wilkins, S., Keith, D. A., & Adam, P. (2003). Measuring success: Evaluating the restoration of a grassy eucalypt woodland on the cumberland plain, Sydney, Australia. Restoration Ecology, 11, 489–503. doi: 10.1046/j.1526-100X.2003.rec0244.x.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Ministry of EducationKey Laboratory of Arid and Grassland Ecology at Lanzhou UniversityLanzhouChina

Personalised recommendations