Advertisement

A DSS for sustainable development and environmental protection of agricultural regions

  • Basil D. Manos
  • Jason Papathanasiou
  • Thomas Bournaris
  • Kostas Voudouris
Article

Abstract

This paper presents a decision support system (DSS) for sustainable development and environmental protection of agricultural regions developed in the framework of the Interreg-Archimed project entitled WaterMap (development and utilization of vulnerability maps for the monitoring and management of groundwater resources in the ARCHIMED areas). Its aim is to optimize the production plan of an agricultural region taking in account the available resources, the environmental parameters, and the vulnerability map of the region. The DSS is based on an optimization multicriteria model. The spatial integration of vulnerability maps in the DSS enables regional authorities to design policies for optimal agricultural development and groundwater protection from the agricultural land uses. The DSS can further be used to simulate different scenarios and policies by the local stakeholders due to changes on different social, economic, and environmental parameters. In this way, they can achieve alternative production plans and agricultural land uses as well as to estimate economic, social, and environmental impacts of different policies. The DSS is computerized and supported by a set of relational databases. The corresponding software has been developed in a Microsoft Windows XP platform, using Microsoft Visual Basic, Microsoft Access, and the LINDO library. For demonstration reasons, the paper includes an application of the DSS in a region of Northern Greece.

Keywords

Decision support systems Multicriteria mathematical programming Sustainable development Environmental management Vulnerability maps 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aller, L., Bennet, T., Lehr, J. H., Petty, R. J., & Hackett, G. (1987). DRASTIC: A standardized system for evaluating groundwater pollution potential using hydrogeological setting (pp 163). Washington, DC: US Environmental Protection Agency, EPA/600/2-87/035.Google Scholar
  2. Al-Zabet, T. (2002). Evaluation of aquifer vulnerability to contamination potential using the DRASTIC method. Environmental Geology, 43, 203–208. doi: 10.1007/s00254-002-0645-5.CrossRefGoogle Scholar
  3. Amador, F., Sumpsi, J. M., & Romero, C. (1998). A non-interactive methodology to assess farmers’ utility functions: An application to large farms in Andalusia, Spain. European Review of Agriculture Economics, 25, 95–109.Google Scholar
  4. Barac, A., Kellner, K., & De Klerk, N. (2004). Land user participation in developing a computerised decision support system for combating desertification. Environmental Monitoring and Assessment, 99(1–3), 223–231.CrossRefGoogle Scholar
  5. Bartolini, F., Gallerani, V., Raggi, M., & Viaggi, D. (2007a). Implementing the water framework directive: Contract design and the cost of measures to reduce nitrogen pollution from agriculture. Environmental Management, 40(4), 567–577. doi: 10.1007/s00267-005-0136-z.CrossRefGoogle Scholar
  6. Bartolini, F., Bazzani, G. M., Gallerani, V., Raggi, M., & Viaggi, D. (2007b). The impact of water and agriculture policy scenarios on irrigated farming systems in Italy: An analysis based on farm level multi-attribute linear programming models. Agricultural Systems, 93(1–3), 90–114. doi: 10.1016/j.agsy.2006.04.006.CrossRefGoogle Scholar
  7. Berbel, J. & Rodriguez, A. (1998). An MCDM approach to production analysis: An application to irrigated farms in Southern Spain. European Journal of Operational Research, 107(1), 108-118.CrossRefGoogle Scholar
  8. Gomez-Limon, J. A., & Riesgo, L. (2004). Irrigation water pricing: Differential impacts on irrigated farms. Agricultural Economics, 31(1), 47–66. doi: 10.1111/j.1574-0862.2004.tb00221.x.CrossRefGoogle Scholar
  9. Gomez-Limon, J. A., Arriaza, M., & Berbel, J. (2002). Conflicting implementation of agricultural and water policies in irrigated areas in the EU. Journal of Agricultural Economics, 53, 259–277. doi: 10.1111/j.1477-9552.2002.tb00020.x.CrossRefGoogle Scholar
  10. Gomez-Limon, J. A., & Arriaza, M. (2000). Socio-economic and environmental impact of agenda 2000 and alternative policy choices for market liberalization on an irrigated area in northwestern Spain. Agricultural Economics Research, 1, 18–30.Google Scholar
  11. Gomez-Limon, J. A., & Berbel, J. (2000). Multicriteria analysis of derived water demand functions: A Spanish case study. Agricultural Systems, 63, 49–72. doi: 10.1016/S0308-521X(99)00075-X.CrossRefGoogle Scholar
  12. Kaur, R., Paul, M., & Malik, R. (2007). Impact assessment and recommendation of alternative conjunctive water use strategies for salt affected agricultural lands through a field scale decision support system—A case study. Environmental Monitoring and Assessment, 129, 257–270. doi: 10.1007/s10661-006-9359-6.CrossRefGoogle Scholar
  13. Manos, B., & Voros, M. (1993). A decision support system for poultry producers. In Proceedings of 9th world farm management congress, invited paper, Budapest (pp. 232–253).Google Scholar
  14. Manos, B., Bournaris, T., Kamruzzaman, M., Nakou, I., & Tziaka, D. (2004a). Sustainability of European irrigated agriculture. In J. Berbel, & C. Gutierez (Eds.), The case of Greece in sustainability of European irrigated agriculture under water framework directive and agenda 2000. Brussels: European Commission, ISBN 92-894-8005-X.Google Scholar
  15. Manos, B., Bournaris, T., Silleos, N., Antonopoulos, V., & Papathanasiou, J. (2004b). A decision support system approach for rivers monitoring and sustainable management. Environmental Monitoring and Assessment, 96(1–3), 85–98.CrossRefGoogle Scholar
  16. Manos, B., Ciani, A., Bournaris, T., Vassiliadou, I., & Papathanasiou, J. (2004c). A taxonomy survey of decision support systems in agriculture. Agricultural Economics Research, 5(2), 80–94.Google Scholar
  17. Manos, B., Bournaris, T. H., Kamruzzaman, M., Begum. A. A. & Papathanasiou, J. (2006). The regional impact of irrigation water pricing in Greece under alternative scenarios of European policy: A multicriteria analysis. Regional Studies, 39(9), 1055–1068.CrossRefGoogle Scholar
  18. Manos, B., Begum, A. A., Kamruzzaman, M., Nakou, I., & Papathanasiou, J. (2007). Fertilizer price policy, the environment and farms behaviour. Journal of Policy Modeling, 29(1), 87–97.CrossRefGoogle Scholar
  19. Manos, B., Bournaris, T., & Papathanasiou, J. (2008a). A spatial model—DSS to support the sustainable planning process in the agricultural sector. Watermap project. Project’s report. Aristotle University of Thessaloniki.Google Scholar
  20. Manos, B., Papathanasiou, J., & Bournaris, T. (2008b). Watermap DSS guide. Watermap project. Project’s report. Aristotle University of Thessaloniki.Google Scholar
  21. Papathanasiou, J., Manos, B., Vlachopoulou, M., & Vassiliadou, I. (2005). A decision support system for farm regional planning. Yugoslav Journal of Operations Research, 15(1), 109–124. doi: 10.2298/YJOR0501109P.CrossRefGoogle Scholar
  22. Pujol, J., Raggi, M., & Viaggi, D. (2006). The potential impact of markets for irrigation water in Italy and Spain: A comparison of two study areas. The Australian Journal of Agricultural and Resource Economics, 50(3), 361–380. doi: 10.1111/j.1467-8489.2006.00352.x.CrossRefGoogle Scholar
  23. Romero, C. (1991). Handbook of critical issues in goal programming. Oxford: Pergamon Press.Google Scholar
  24. Sofios, C., Arabatzis, G., & Baltas, E. (2008). Policy for management of water resources in Greece. The Environmentalist, 28, 185–194. doi: 10.1007/s10669-007-9126-4.CrossRefGoogle Scholar
  25. Sprague, R. H., Jr, & Carlson, E. D. (1982). Building effective decision support systems. Englewood Cliffs, New Jersey: Prentice Hall.Google Scholar
  26. Sumpsi, J. M., Amador, F. & Romero C. (1993). A research on the Andalusian farmers’ objectives: Methodological aspects and policy implication. In Aspects of the common agricultural policy, VIIth EAAE congress, Stresa, Italy.Google Scholar
  27. Sumpsi, J. M., Amador, F., & Romero, C. (1997). On farmers’ objectives: A multi-criteria approach. European Journal of Operational Research, 96, 1–8. doi: 10.1016/0377-2217(95)00338-X.CrossRefGoogle Scholar
  28. Voudouris, K. (2009). Assessing groundwater pollution risk in Sarigkiol Basin, NW Greece. In M. Gallo, & M. Herrari (Eds.), River pollution research progress. Nova Science Publishers, Chapter 7, pp 17.Google Scholar
  29. Voudouris, K., Manos, B., Adamidou, K., Patrikaki, O., Trikilidou, E., Goutzios, B., et al. (2007). Development and utilization of vulnerability maps for the monitoring and management of groundwater resources in the ARCHIMED areas: Presentation of an INTERREG III B Project. In Proc. of intern. scientific conference “Modern management of mine producing, geology and environmental protection (SGEM 2007),” 11–15 June, Varna, Bulgaria.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Basil D. Manos
    • 1
  • Jason Papathanasiou
    • 1
  • Thomas Bournaris
    • 1
  • Kostas Voudouris
    • 1
  1. 1.Aristotle University of ThessalonikiThessalonikiGreece

Personalised recommendations