Skip to main content
Log in

Ecotoxicological and microbiological characterization of soils from heavy-metal- and hydrocarbon-contaminated sites

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The aims of this study were to characterize soils from industrial sites by combining physicochemical, microbiological, and ecotoxicological parameters and to assess the suitability of these assays for evaluation of contaminated sites and ecological risk assessment. The soil samples were taken from long-term contaminated sites containing high amounts of heavy metals (sites 1 and 2) or petroleum hydrocarbons (site 3) located in the upper Silesia Industrial Region in southern Poland. Due to soil heterogeneity, large differences between all investigated parameters were measured. Microbiological properties revealed the presence of high numbers of viable hetrotrophic microorganisms. Soil enzyme activities were considerably reduced or could not be detected in contaminated soils. Activities involved in N turnover (N mineralization and nitrification) were significantly (P < 0.05) higher in samples from the metal-contaminated sites than in samples from the hydrocarbon-contaminated site, whereas the opposite was observed for phosphatase activity. The Microtox test system appeared to be the most appropriate to detect toxicity and significant differences in toxicity between the three sites. The Ostracodtoxkit test was the most appropriate test system to detect toxicity in the hydrocarbon-contaminated soil samples. Correlation analysis between principal components (obtained from factor analysis) determined for physicochemical, microbiological, and ecotoxicological soil properties demonstrated the impact of total and water-extractable contents of heavy metals on toxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahtiainen, J. (2002). Microbiological tests and mesurements in the assessment of harmful substances and pollution. Monographs of the Boreal Environment Research No 22. Finland: Finnish Environment Institute.

    Google Scholar 

  • Alexander, M. (1997). Introduction to soil microbiology (2nd ed.). New York: Wiley.

    Google Scholar 

  • Altman, D. J., Hazen, T. C., Tien, A., Lombard, K. H., & Worsztynowicz, A. (1997). Czechowice oil refinery bioremediation demonstration test plan, WSRC-MS-97-21H. Aiken, S.C. DOE-NITS: Westinghouse Savannah River Company.

    Google Scholar 

  • Braud-Grasset, F., Baud-Grasset, S., & Safferman, S. I. (1993). Evaluation of the bioremediation of a contaminated soil with phytotoxicity tests. Chemosphere, 26, 1365–1374. doi:10.1016/0045-6535(93)90187-A.

    Article  Google Scholar 

  • Brohon, B., Delolme, C., & Gourdon, R. (2001). Complementarity of bioassays and microbial activity measurements for the evaluation of hydrocarbon-contaminated soils quality. Soil Biology & Biochemistry, 33, 883–891. doi:10.1016/S0038-0717(00)00234-0.

    Article  CAS  Google Scholar 

  • Brookes, P. C. (1995). The use of microbial parameters in monitoring soil pollution by heavy metals. Biology and Fertility of Soils, 19, 269–279. doi:10.1007/BF00336094.

    Article  CAS  Google Scholar 

  • Castaldi, S., Rutiglianao, F. A., & Virzo de Santo, A. (2004). Suitability of soil microbial parameters as indicators of heavy metal pollution. Water, Air, and Soil Pollution, 158, 21–35. doi:10.1023/B:WATE.0000044824.88079.d9.

    Article  CAS  Google Scholar 

  • Chapman, P. M. (1996). Presentation and interpretation of sediment quality triad data. Ecotoxicology (London, England), 5, 327–339. doi:10.1007/BF00119054.

    Google Scholar 

  • Chapman, P. M., Power, E. A., & Burton, G. A., Jr. (1992). Integrative assessments in aquatic ecosystems. In: G. A. Burton Jr. (Ed.), Sediment toxicity assessments (pp. 313–340). Boca Raton: Lewis.

    Google Scholar 

  • Greene, J. C., Bartels, C. L., Warren-Hicks, W. J., Parkhurst, B. R., Linder, G. L., Peterson, S. A., et al. (1989). Protocols for short-term toxicity screening of hazardous waste sites. EPA/600/3-88/029. Corvallis: United States Environmental Protection Agency.

    Google Scholar 

  • IETU (Institute for Ecology of Industrial Areas) (1997). Bioremediation of petroleum hydrocarbon-contaminated soil. Comprehensive report. Katowice: Institute for Ecology of Industrial Areas.

    Google Scholar 

  • Kizilkaya, R., Askin, T., Bayrakli, B., & Saglam, M. (2004). Microbiological characteristics of soils contaminated with heavy metals. European Journal of Soil Biology, 40, 95–102. doi:10.1016/j.ejsobi.2004.10.002.

    Article  CAS  Google Scholar 

  • Kucharski, R., Sas-Nowosielska, A., Małkowski, E., Japenga, J., Kuperberg, J. M., Pogrzeba, M., et al. (2005). The use of indigenous plant species and calcium phosphate for the stabilization of highly metal-polluted sites in southern Poland. Plant and Soil, 273, 291–305. doi:10.1007/s11104-004-8068-6.

    Article  CAS  Google Scholar 

  • Leitgib, L., Kalman, J., & Gruiz, K. (2007). Comparison of bioassays by testing whole soil and their water extract from contaminated sites. Chemosphere, 66, 428–434. doi:10.1016/j.chemosphere.2006.06.024.

    Article  CAS  Google Scholar 

  • Liao, M., & Xie, X. M. (2007). Effect of heavy metal on substrate utilization pattern, biomass, and activity of microbial communities in a reclaimed mining wasteland of red soil area. Ecotoxicology and Environmental Safety, 66, 217–223. doi:10.1016/j.ecoenv.2005.12.013.

    Article  CAS  Google Scholar 

  • Malina, G. (2004). Ecotoxicological and environmental problems associated with the former chemical plant in Tarnowskie Gory, Poland. Toxicology, 205, 157–172. doi:10.1016/j.tox.2004.06.064.

    Article  CAS  Google Scholar 

  • Margesin, R., & Schinner, F. (Eds.) (2005) Manual for soil analysis—monitoring and assessing soil bioremediation. Soil biology (Vol.5). Berlin: Springer.

    Google Scholar 

  • Margesin, R., Walder, G., & Schinner, F. (2000). The impact of hydrocarbon remediation (diesel oil and polycyclic aromatic hydrocarbons) on enzyme activities and microbial properties of soil. Acta Biotechnologica, 20, 313–333. doi:10.1002/abio.370200312.

    Article  CAS  Google Scholar 

  • Nałęcz-Jawecki, G., & Sawicki, J. (1998). Toxicity of inorganic compounds in the Spirotox test—a miniaturized version of the Spirostomum ambiguum test. Archives of Environmental Contamination and Toxicology, 34, 1–5. doi:10.1007/s002449900278.

    Article  Google Scholar 

  • Nannipieri, P., Greco, S., & Ceccanti, B. (1990). Ecological significance of the biological activity in soil. In G. Stotzky & J. M. Bollag (Eds.), Soil biochemistry (Vol. 6, pp.233–355). New York: Marcel Dekker Inc.

    Google Scholar 

  • Nielsen, M. N., & Winding, A. (2002). Microorganisms as indicators of soil health, NERI technical report no. 388. Denmark: National Environmental Research Institute.

    Google Scholar 

  • Oliveira, A., & Pampulha, M. E. (2006). Effects of long-term heavy metal contamination on soil microbial characteristics. Journal of Bioscience and Bioengineering, 3, 157–161. doi:10.1263/jbb.102.157.

    Article  Google Scholar 

  • Pedersen, E., Damborg, A., & Kristensen, P. (1995). Guidance document for risk assessment of industrial waste water. Miljo-project No.298, Danish Environmental Protection Agency.

  • Phytotoxkit™ (2004). Seed germination and early growth microbiotest with higher plants. Standard operational procedure. Nazareth, Belgium: MicroBioTests.

    Google Scholar 

  • Płaza, G., Nałęcz-Jawecki, G., Ulfig, K., & Brigmon, R. L. (2005). The application of bioassays as indicators of petroleum-contaminated soil remediation. Chemosphere, 59, 289–296. doi:10.1016/j.chemosphere.2004.11.049.

    Article  Google Scholar 

  • Renoux, A. Y., Tyagi, R. D., Roy, Y., & Samson, R. (1995). Ecotoxicological assessment of bioremediation of a petroleum-contaminated soil. In R. E. Hinchee, F. J. Brockman & C. M. Vogel (Eds.), Microbial processes for bioremediation (pp. 259–264). Columbus: Battelle.

    Google Scholar 

  • Rombke, J., Breure, A. M., Mulder, C., & Rutgers, M. (2005). Legislation and ecological quality assessment of soil: Implementation of ecological indication systems in Europe. Ecotoxicology and Environmental Safety, 62, 201–210. doi:10.1016/j.ecoenv.2005.03.023.

    Article  Google Scholar 

  • Salanitro, J. P., Dorn, P. B., Huesemann, M. H., Moore, K. O., Rhodes, I. A., Jackson, L. M., et al. (1997). Crude oil hydrocarbon bioremediation and soil ecotoxicity assessment. Environmental Science & Technology, 31, 1769–1776. doi:10.1021/es960793i.

    Article  CAS  Google Scholar 

  • Saterbak, A., Toy, R. J., Wong, D. C. L., McMain, B. J., Williams, M. P., Dorn, P. B., et al. (1999). Ecotoxicological and analytical assessment of hydrocarbon-contaminated soils and application to ecological risk assessment. Environmental Toxicology and Chemistry, 18, 1591–1607. doi:10.1897/1551-5028(1999)018<1591:EAAAOH>2.3.CO;2.

    Article  CAS  Google Scholar 

  • Schinner, F., Öhlinger, R., Kandeler, E., & Margesin, R. (Eds.) (1996). Methods in soil biology. Berlin: Springer.

    Google Scholar 

  • Słowikowski, D., Korcz, M., Szdzuj, J., Bronder, J., & Długosz, J. (2003). Spatial structure of soil monitoring network as a source of uncertainty in soil contamination assessment. ConSoil 2003—8th International FZK/TNO Conference on Contaminated Soil, Poster Session (PoS) B: Identification of Risks, 12–16 May 2003. Belgium: Gent.

    Google Scholar 

  • Szdzuj, J., Korcz, M., Krupanek, J., Janikowski, R., Słowikowski, D., & Bronder, J. (2004). Development of an integrated management approach for the Tarnowskie Góry Megasite. In Proceedings Contaminated Land—Achievements and Aspirations, 12–15 Sep. 2004 (pp. 205–218). UK: Loughborough.

    Google Scholar 

  • van Kraats, J. (1996). Environmental impact assessment in water management. European Water Pollution Control, 6, 3–4.

    Google Scholar 

  • Vepsalainen, M., Kukkonen, S., Vestberg, M., Sirvio, H., & Niemi, R. M. (2001). Application of soil enzyme activity test kit in a field experiment. Soil Biology & Biochemistry, 33, 1665–1672. doi:10.1016/S0038-0717(01)00087-6.

    Article  CAS  Google Scholar 

  • Wang, W. (1991). Literature review on higher plants for toxicity testing. Water, Air, and Soil Pollution, 59, 381–400. doi:10.1007/BF00211845.

    Article  CAS  Google Scholar 

  • Wypych, J., & Mańko, T. (2002). Determination of volatile organic compounds (VOCs) in water and soil using solid phase microextraction. Chemia Analityczna, 47, 507–512.

    CAS  Google Scholar 

  • Yuangen, Y., Campbell, C. D., Clark, L., Cameron, C. M., & Paterson, E. (2006). Microbial indicators of heavy metal contamination in urban and rural soils. Chemosphere, 63, 1942–1952. doi:10.1016/j.chemosphere.2005.10.009.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosa Margesin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Płaza, G.A., Nałęcz-Jawecki, G., Pinyakong, O. et al. Ecotoxicological and microbiological characterization of soils from heavy-metal- and hydrocarbon-contaminated sites. Environ Monit Assess 163, 477–488 (2010). https://doi.org/10.1007/s10661-009-0851-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-009-0851-7

Keywords

Navigation