Environmental Monitoring and Assessment

, Volume 163, Issue 1–4, pp 477–488 | Cite as

Ecotoxicological and microbiological characterization of soils from heavy-metal- and hydrocarbon-contaminated sites

  • Grażyna A. Płaza
  • Grzegorz Nałęcz-Jawecki
  • Onruthai Pinyakong
  • Paul Illmer
  • Rosa Margesin


The aims of this study were to characterize soils from industrial sites by combining physicochemical, microbiological, and ecotoxicological parameters and to assess the suitability of these assays for evaluation of contaminated sites and ecological risk assessment. The soil samples were taken from long-term contaminated sites containing high amounts of heavy metals (sites 1 and 2) or petroleum hydrocarbons (site 3) located in the upper Silesia Industrial Region in southern Poland. Due to soil heterogeneity, large differences between all investigated parameters were measured. Microbiological properties revealed the presence of high numbers of viable hetrotrophic microorganisms. Soil enzyme activities were considerably reduced or could not be detected in contaminated soils. Activities involved in N turnover (N mineralization and nitrification) were significantly (P < 0.05) higher in samples from the metal-contaminated sites than in samples from the hydrocarbon-contaminated site, whereas the opposite was observed for phosphatase activity. The Microtox test system appeared to be the most appropriate to detect toxicity and significant differences in toxicity between the three sites. The Ostracodtoxkit test was the most appropriate test system to detect toxicity in the hydrocarbon-contaminated soil samples. Correlation analysis between principal components (obtained from factor analysis) determined for physicochemical, microbiological, and ecotoxicological soil properties demonstrated the impact of total and water-extractable contents of heavy metals on toxicity.


Soil pollution Heavy metals Hydrocarbons Microbial activity Ecotoxicity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ahtiainen, J. (2002). Microbiological tests and mesurements in the assessment of harmful substances and pollution. Monographs of the Boreal Environment Research No 22. Finland: Finnish Environment Institute.Google Scholar
  2. Alexander, M. (1997). Introduction to soil microbiology (2nd ed.). New York: Wiley.Google Scholar
  3. Altman, D. J., Hazen, T. C., Tien, A., Lombard, K. H., & Worsztynowicz, A. (1997). Czechowice oil refinery bioremediation demonstration test plan, WSRC-MS-97-21H. Aiken, S.C. DOE-NITS: Westinghouse Savannah River Company.Google Scholar
  4. Braud-Grasset, F., Baud-Grasset, S., & Safferman, S. I. (1993). Evaluation of the bioremediation of a contaminated soil with phytotoxicity tests. Chemosphere, 26, 1365–1374. doi: 10.1016/0045-6535(93)90187-A.CrossRefGoogle Scholar
  5. Brohon, B., Delolme, C., & Gourdon, R. (2001). Complementarity of bioassays and microbial activity measurements for the evaluation of hydrocarbon-contaminated soils quality. Soil Biology & Biochemistry, 33, 883–891. doi: 10.1016/S0038-0717(00)00234-0.CrossRefGoogle Scholar
  6. Brookes, P. C. (1995). The use of microbial parameters in monitoring soil pollution by heavy metals. Biology and Fertility of Soils, 19, 269–279. doi: 10.1007/BF00336094.CrossRefGoogle Scholar
  7. Castaldi, S., Rutiglianao, F. A., & Virzo de Santo, A. (2004). Suitability of soil microbial parameters as indicators of heavy metal pollution. Water, Air, and Soil Pollution, 158, 21–35. doi: 10.1023/B:WATE.0000044824.88079.d9.CrossRefGoogle Scholar
  8. Chapman, P. M. (1996). Presentation and interpretation of sediment quality triad data. Ecotoxicology (London, England), 5, 327–339. doi: 10.1007/BF00119054.Google Scholar
  9. Chapman, P. M., Power, E. A., & Burton, G. A., Jr. (1992). Integrative assessments in aquatic ecosystems. In: G. A. Burton Jr. (Ed.), Sediment toxicity assessments (pp. 313–340). Boca Raton: Lewis.Google Scholar
  10. Greene, J. C., Bartels, C. L., Warren-Hicks, W. J., Parkhurst, B. R., Linder, G. L., Peterson, S. A., et al. (1989). Protocols for short-term toxicity screening of hazardous waste sites. EPA/600/3-88/029. Corvallis: United States Environmental Protection Agency.Google Scholar
  11. IETU (Institute for Ecology of Industrial Areas) (1997). Bioremediation of petroleum hydrocarbon-contaminated soil. Comprehensive report. Katowice: Institute for Ecology of Industrial Areas.Google Scholar
  12. Kizilkaya, R., Askin, T., Bayrakli, B., & Saglam, M. (2004). Microbiological characteristics of soils contaminated with heavy metals. European Journal of Soil Biology, 40, 95–102. doi: 10.1016/j.ejsobi.2004.10.002.CrossRefGoogle Scholar
  13. Kucharski, R., Sas-Nowosielska, A., Małkowski, E., Japenga, J., Kuperberg, J. M., Pogrzeba, M., et al. (2005). The use of indigenous plant species and calcium phosphate for the stabilization of highly metal-polluted sites in southern Poland. Plant and Soil, 273, 291–305. doi: 10.1007/s11104-004-8068-6.CrossRefGoogle Scholar
  14. Leitgib, L., Kalman, J., & Gruiz, K. (2007). Comparison of bioassays by testing whole soil and their water extract from contaminated sites. Chemosphere, 66, 428–434. doi: 10.1016/j.chemosphere.2006.06.024.CrossRefGoogle Scholar
  15. Liao, M., & Xie, X. M. (2007). Effect of heavy metal on substrate utilization pattern, biomass, and activity of microbial communities in a reclaimed mining wasteland of red soil area. Ecotoxicology and Environmental Safety, 66, 217–223. doi: 10.1016/j.ecoenv.2005.12.013.CrossRefGoogle Scholar
  16. Malina, G. (2004). Ecotoxicological and environmental problems associated with the former chemical plant in Tarnowskie Gory, Poland. Toxicology, 205, 157–172. doi: 10.1016/j.tox.2004.06.064.CrossRefGoogle Scholar
  17. Margesin, R., & Schinner, F. (Eds.) (2005) Manual for soil analysis—monitoring and assessing soil bioremediation. Soil biology (Vol.5). Berlin: Springer.Google Scholar
  18. Margesin, R., Walder, G., & Schinner, F. (2000). The impact of hydrocarbon remediation (diesel oil and polycyclic aromatic hydrocarbons) on enzyme activities and microbial properties of soil. Acta Biotechnologica, 20, 313–333. doi: 10.1002/abio.370200312.CrossRefGoogle Scholar
  19. Nałęcz-Jawecki, G., & Sawicki, J. (1998). Toxicity of inorganic compounds in the Spirotox test—a miniaturized version of the Spirostomum ambiguum test. Archives of Environmental Contamination and Toxicology, 34, 1–5. doi: 10.1007/s002449900278.CrossRefGoogle Scholar
  20. Nannipieri, P., Greco, S., & Ceccanti, B. (1990). Ecological significance of the biological activity in soil. In G. Stotzky & J. M. Bollag (Eds.), Soil biochemistry (Vol. 6, pp.233–355). New York: Marcel Dekker Inc.Google Scholar
  21. Nielsen, M. N., & Winding, A. (2002). Microorganisms as indicators of soil health, NERI technical report no. 388. Denmark: National Environmental Research Institute.Google Scholar
  22. Oliveira, A., & Pampulha, M. E. (2006). Effects of long-term heavy metal contamination on soil microbial characteristics. Journal of Bioscience and Bioengineering, 3, 157–161. doi: 10.1263/jbb.102.157.CrossRefGoogle Scholar
  23. Pedersen, E., Damborg, A., & Kristensen, P. (1995). Guidance document for risk assessment of industrial waste water. Miljo-project No.298, Danish Environmental Protection Agency.Google Scholar
  24. Phytotoxkit™ (2004). Seed germination and early growth microbiotest with higher plants. Standard operational procedure. Nazareth, Belgium: MicroBioTests.Google Scholar
  25. Płaza, G., Nałęcz-Jawecki, G., Ulfig, K., & Brigmon, R. L. (2005). The application of bioassays as indicators of petroleum-contaminated soil remediation. Chemosphere, 59, 289–296. doi: 10.1016/j.chemosphere.2004.11.049.CrossRefGoogle Scholar
  26. Renoux, A. Y., Tyagi, R. D., Roy, Y., & Samson, R. (1995). Ecotoxicological assessment of bioremediation of a petroleum-contaminated soil. In R. E. Hinchee, F. J. Brockman & C. M. Vogel (Eds.), Microbial processes for bioremediation (pp. 259–264). Columbus: Battelle.Google Scholar
  27. Rombke, J., Breure, A. M., Mulder, C., & Rutgers, M. (2005). Legislation and ecological quality assessment of soil: Implementation of ecological indication systems in Europe. Ecotoxicology and Environmental Safety, 62, 201–210. doi: 10.1016/j.ecoenv.2005.03.023.CrossRefGoogle Scholar
  28. Salanitro, J. P., Dorn, P. B., Huesemann, M. H., Moore, K. O., Rhodes, I. A., Jackson, L. M., et al. (1997). Crude oil hydrocarbon bioremediation and soil ecotoxicity assessment. Environmental Science & Technology, 31, 1769–1776. doi: 10.1021/es960793i.CrossRefGoogle Scholar
  29. Saterbak, A., Toy, R. J., Wong, D. C. L., McMain, B. J., Williams, M. P., Dorn, P. B., et al. (1999). Ecotoxicological and analytical assessment of hydrocarbon-contaminated soils and application to ecological risk assessment. Environmental Toxicology and Chemistry, 18, 1591–1607. doi: 10.1897/1551-5028(1999)018<1591:EAAAOH>2.3.CO;2.CrossRefGoogle Scholar
  30. Schinner, F., Öhlinger, R., Kandeler, E., & Margesin, R. (Eds.) (1996). Methods in soil biology. Berlin: Springer.Google Scholar
  31. Słowikowski, D., Korcz, M., Szdzuj, J., Bronder, J., & Długosz, J. (2003). Spatial structure of soil monitoring network as a source of uncertainty in soil contamination assessment. ConSoil 2003—8th International FZK/TNO Conference on Contaminated Soil, Poster Session (PoS) B: Identification of Risks, 12–16 May 2003. Belgium: Gent.Google Scholar
  32. Szdzuj, J., Korcz, M., Krupanek, J., Janikowski, R., Słowikowski, D., & Bronder, J. (2004). Development of an integrated management approach for the Tarnowskie Góry Megasite. In Proceedings Contaminated Land—Achievements and Aspirations, 12–15 Sep. 2004 (pp. 205–218). UK: Loughborough.Google Scholar
  33. van Kraats, J. (1996). Environmental impact assessment in water management. European Water Pollution Control, 6, 3–4.Google Scholar
  34. Vepsalainen, M., Kukkonen, S., Vestberg, M., Sirvio, H., & Niemi, R. M. (2001). Application of soil enzyme activity test kit in a field experiment. Soil Biology & Biochemistry, 33, 1665–1672. doi: 10.1016/S0038-0717(01)00087-6.CrossRefGoogle Scholar
  35. Wang, W. (1991). Literature review on higher plants for toxicity testing. Water, Air, and Soil Pollution, 59, 381–400. doi: 10.1007/BF00211845.CrossRefGoogle Scholar
  36. Wypych, J., & Mańko, T. (2002). Determination of volatile organic compounds (VOCs) in water and soil using solid phase microextraction. Chemia Analityczna, 47, 507–512.Google Scholar
  37. Yuangen, Y., Campbell, C. D., Clark, L., Cameron, C. M., & Paterson, E. (2006). Microbial indicators of heavy metal contamination in urban and rural soils. Chemosphere, 63, 1942–1952. doi: 10.1016/j.chemosphere.2005.10.009.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Grażyna A. Płaza
    • 1
  • Grzegorz Nałęcz-Jawecki
    • 2
  • Onruthai Pinyakong
    • 3
  • Paul Illmer
    • 4
  • Rosa Margesin
    • 4
  1. 1.Department of Environmental MicrobiologyInstitute for Ecology of Industrial AreasKatowicePoland
  2. 2.Department of Environmental Health SciencesMedical University of WarsawWarszawaPoland
  3. 3.Department of Microbiology, Faculty of ScienceChulalongkorn UniversityBangkokThailand
  4. 4.Institute of MicrobiologyUniversity of InnsbruckInnsbruckAustria

Personalised recommendations