Environmental Monitoring and Assessment

, Volume 163, Issue 1–4, pp 379–396 | Cite as

Hillslope terracing effects on the spatial variability of plant development as assessed by NDVI in vineyards of the Priorat region (NE Spain)

  • José A. Martínez-Casasnovas
  • María Concepción Ramos
  • Sílvia Espinal-Utgés


The availability of heavy machinery and the vineyard restructuring and conversion plans of the European Union Common Agricultural Policy (Commission Regulation EC no. 1227/2000 of 31 May 2000) have encouraged the restructuring of many vineyards on hillslopes of Mediterranean Europe, through the creation of terraces to favor the mechanization of agricultural work. Terrace construction requires cutting and filling operations that create soil spatial variability, which affects soil properties and plant development. In the present paper, we study the effects of hillslope terracing on the spatial variability of the normalized difference vegetation index (NDVI) in fields of the Priorat region (NE Spain) during 2004, 2005, and 2006. This index was computed from high-resolution remote sensing data (Quickbird-2). Detailed digital terrain models before and after terrace construction were used to assess the earth movements. The results indicate that terracing by heavy machinery induced high variability on the NDVI values over the years, showing significant differences as effect of the cut and fill operations.


Hillslope terracing NDVI EU common agricultural policy Vineyards 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abreu, X. (2005). Evaluación del efecto de las propiedades hidrológicas y sistema de manejo sobre la susceptibilidad a erosión superficial y en masa en suelos pedregosos con viña del Priorato (Cataluña, España). Ph.D. thesis. Lleida, Spain: University of Lleida, 193 pp.Google Scholar
  2. Aldighieri, B., Bonardi, L., Comolli, R., Conforto, A., Mariant, L., Mazzoleni, G., et al. (2006). Vine-growing in Valchiavenna (SO): The Pianazzola project. Bollettino della Societa Geologica Italiana, Supplemento, 6, 17–27.Google Scholar
  3. Andresen, T., Bianchi de Aguiar, F., & Curado, M. J. (2004). The Alto Douro wine region greenway. Landscape and Urban Planning, 68, 289–303.CrossRefGoogle Scholar
  4. Andrieux, P., Le Bissonnais, Y., Trambouze, W., Coulouma, G., & Zante, P. (2007). Erosion as af fected by agricultural practices in the Mediterranean vineyard. Geophysical Research Abstracts, 9, 08162.Google Scholar
  5. Arnáez, J., Lasanta, T., Ruiz-Flaño, P., & Ortigosa, L. (2007). Factors affecting runoff and erosion under simulated rainfall in Mediterranean vineyards. Soil and Tillage Research, 93, 324–334.CrossRefGoogle Scholar
  6. Behnia, P. (2005). Comparison between four methods for data fusion of ETM + multispectral and pan images. Geo-Spatial Information Science, 8, 98–103.CrossRefGoogle Scholar
  7. Blake, G. R., & Hartge, K. H. (1986). Bulk density. In A. Klute (Ed.), Methods of soil analysis, Part I. physical and mineralogical methods: Agronomy monograph (Vol. 9, 2nd edn., pp. 363–375). Madison, WI: American Society of Agronomy.Google Scholar
  8. Borselli, L., Torri, D., Øygarden, L., De Alba, S., Martínez-Casasnovas, J. A., Bazzoffi, P., et al. (2006). Soil erosion by land levelling. In J. Boardman, & J. Poesen (Eds.), Soil erosion in Europe (pp. 643–658). Chichester: Wiley.CrossRefGoogle Scholar
  9. Bramley, R. G. V. (2005). Understanding variability in winegrape production systems. 2. Within vineyard variation in quality over several vintages. Australian Journal of Grape and Wine Research, 11, 33–42.CrossRefGoogle Scholar
  10. Carl, T., & Richter, M. (1989). Geoecological and morphological processes on abandoned vine-terraces in the Cinque Terre (Liguria). Geookodynamik, 10, 125–158.Google Scholar
  11. Chavez, P. S. (1996). Image-based atmospheric corrections. Revisited and improved. Photogrammetric Engineering and Remote Sensing, 55, 339–348.Google Scholar
  12. Cots-Folch, R., Martínez-Casasnovas, J. A., & Ramos, C. (2006). Land terracing for new vineyard plantations in the north-eastern Spanish Mediterranean region: Landscape effects of the EU Council Regulation policy for vineyards’ restructuring. Agriculture, Ecosystems and Environment, 115, 88–96.CrossRefGoogle Scholar
  13. De Alba, S., Lindstrom, M., Schumacher, T. E., & Malo, D. D. (2004). Soil landscape evolution due to soil redistribution by tillage: A new conceptual model of soil catena evolution in agricultural landscapes. Catena, 58, 77–100.CrossRefGoogle Scholar
  14. Dercon, G., Deckers, J., Govers, G., Poesen, J., Sánchez, H., Vanegas, R., et al. (2003). Spatial variability in soil properties on slow-forming terraces in the Andes region of Ecuador. Soil and Tillage Research, 72, 31–41.CrossRefGoogle Scholar
  15. DigitalGlobe (2003). Radiance conversion of Quickbird data—Technical note. Longmont, Colorado: DigitalGlobe.Google Scholar
  16. Dobrowski, S. Z., Ustin, S. L., & Wolpert, J. A. (2003). Grapevine dormant pruning weight prediction using remotely-sensed data. Australian Journal of Grape and Wine Research, 9, 177–182.CrossRefGoogle Scholar
  17. Dunjó, G., Pardini, G., & Gispert, M. (2003). Land use change effects on abandoned terraced soils in a Mediterranean catchment, NE Spain. Catena, 52, 23–37.CrossRefGoogle Scholar
  18. European Commission (2007). What is the current situation of the European Union’s wine sector? Cited 30 September 2008.
  19. Ferrero, A., Usowicz, B., & Lipiec, J. (2005). Effects of tractor traffic on spatial variability of soil strength and water content in grass covered and cultivated sloping vineyard. Soil and Tillage Research, 84, 127–138.CrossRefGoogle Scholar
  20. Gee, G. W., & Bauder, J. W. (1986). Particle size analysis. In C. A. Black, D. D. Evans, L. E. Ensminger, J. L. White, F. E. Clark, & R. C. Dinauer (Eds.), Methods of soil analysis, Part I. Agronomy (Vol. 9, pp. 393–411). Madison, WI: American Society of Agronomy.Google Scholar
  21. Hall, A., Lamb, D. W., Holzapfel, B., & Louis, J. P. (2002). Optical remote sensing applications in viticulture–a review. Australian Journal of Grape and Wine Research, 8, 36–47.CrossRefGoogle Scholar
  22. Hall, A., Louis, J., & Lamb, D. (2003). Characterizing and mapping vineyard canopy using high-spatial-resolution aerial multispectral images. Computers & Geosciences, 29, 813–822.CrossRefGoogle Scholar
  23. Hammad, A. A., Haugen, L. E., & Børresen, T. (2004). Effects of stonewalled terracing techniques on soil-water conservation and wheat production under Mediterranean conditions. Environmental Management, 34, 701–710.CrossRefGoogle Scholar
  24. Hooke, J. M. (2006). Human impacts on fluvial systems in the Mediterranean region. Geomorphology, 79, 311–335.CrossRefGoogle Scholar
  25. Iglèsies, J. (1975). Les minves dels cultius i de la població a la comarca del Priorat. Madrid: Fundació Salvador Vives Casajuana.Google Scholar
  26. Jonson, L. F., Bosch, D. F., Williams, D. C., & Lobitz, B. M. (2001). Remote sensing of vineyard management zones: Implications for wine quality. Applied Engineering in Agriculture, 17, 557–560.Google Scholar
  27. Lamb, D. W., Weedon, M. M., & Bramley, R. G. V. (2004). Using remote sensing to predict grape phenolics and colour at harvest in a Cabernet Sauvignon vineyard: Timing observations against vine phenology and optimizing image resolution. Australian Journal of Grape and Wine Research, 10, 46–54.Google Scholar
  28. Landi, R. (1989). Revision of land management systems in Italian hilly areas. In U. Schhwertmann, R. J. Rickson, & K. Auwerswald (Eds.), Soil erosion protection measures in Europe. Soil technology series 1 (pp. 175–188). Cremlingen: Catena Werlag.Google Scholar
  29. Lasanta, T., Arnáez, J., Oserín, M., & Ortigosa, M. (2001). Marginal lands and erosion in terraced fields in the Mediterranean mountains. A case study in the Camero Viejo (Northwestern Iberian System, Spain). Mountain Research and Development, 21, 69–76.CrossRefGoogle Scholar
  30. Le Bissonnais, Y., Blavet, D., De Noni, G., Laurent, J. Y., Asseline, J., & Chenu, C. (2007). Erodibility of Mediterranean vineyard soils: Relevant aggregate stability methods and significant soil variables. European Journal of Soil Science, 58, 188–195.CrossRefGoogle Scholar
  31. Leica Geosystems (2003). ERDAS field guide, 7th edn. Atlanta, Georgia: Leica Geosystems GIS & Mapping, LLC.Google Scholar
  32. Martínez-Casasnovas, J. A., & Bordes, X. (2005). Viticultura de precisión: Predicción de cosecha a partir de variables del cultivo e índices de vegetación. Revista de Teledetección, 24, 67–71.Google Scholar
  33. Martínez-Casasnovas, J. A., & Sánchez-Bosch, I. (2000). Impact assessment of changes in land use/conservation practices on soil erosion in the Penedès–Anoia vineyard region (NE Spain). Soil and Tillage Research, 57, 101–106.CrossRefGoogle Scholar
  34. Martínez-Casasnovas, J. A., Ramos, M. C., & Cots-Folch, R. (2008). Influence of the EU CAP on terrain morphology and vineyard cultivation in the Priorat region of NE Spain. Land Use Policy. doi:10.1016/j.landusepol.2008.01.009.
  35. Mazzoleni, G., Aldighieri, B., Conforto, A., Mariani, L., & Murada, G. (2006). Valtellina (Sondrio, Northern Italy): A typical terroir for Nebbiolo grape. Bollettino della Societa Geologica Italiana, Supplemento, 6, 97–106.Google Scholar
  36. Montero, F. J., Meliá, J., Brasa, A., Segarra, D., Cuesta, A., & Lanjeri, S. (1999). Assessment of vine development according to available water resources by using remote sensing in La Mancha, Spain. Agricultural Water Management, 40, 363–375.CrossRefGoogle Scholar
  37. Myneni, R. B., Hall, F. G., Sellers, P. J., & Marshak, A. L. (1995). The meaning of spectral vegetation indices. IEEE Transactions on Geoscience and Remote Sensing, 33, 481–486.CrossRefGoogle Scholar
  38. Ne’eman, G., & Izhaki, I. (1996). Colonization in an abandoned East-Mediterranean vineyard. Journal of Vegetation Science, 7, 465–472.CrossRefGoogle Scholar
  39. Nelson, D. W., & Sommers, L. E. (1982). Total carbon, organic carbon and organic matter. In A. L. Page et al. (Eds.), Methods of soil analysis. Part 2. Chemical and microbiological properties agronomy (Vol. 9, 2nd edn., pp. 539–577). Madison, WI: American Society of Agronomy.Google Scholar
  40. Oliveira, M. T. (2001). Modeling water content of a vineyard soil in the Douro Region, Portugal. Plant and Soil, 233, 213–221.CrossRefGoogle Scholar
  41. Perroux, K. M., & White, I. (1998). Designs for disc permeameters. Soil Science Society of America Journal, 52, 1205–1215.CrossRefGoogle Scholar
  42. Pla, I. (1983). Metodología para la caracterización física con fines de diagnóstico de problemas de manejo y conservación de los suelos en condiciones tropicales. Alcance 32, Revista de la Facultad de Agronomia (Vol. 34, 91 pp). Maracay, Venezuela: Universidad Central de Venezuela.Google Scholar
  43. Ramos, M. C., & Martinez-Casasnovas, J. A. (2006a). Nutrient losses by runoff in vineyards of the Mediterranean Alt Penedès region (NE Spain). Agriculture, Ecosystems and Environment, 113, 356–363.CrossRefGoogle Scholar
  44. Ramos, M. C., & Martinez-Casasnovas, J. A. (2006b). Soil moisture variability at different depths in land-levelled vineyards and its influence on crop productivity. Journal of Hydrology, 321, 131–146.CrossRefGoogle Scholar
  45. Ramos, M. C., Cots-Folch, R., & Martínez-Casasnovas, J. A. (2007a). Sustainability of modern land terracing for vineyard plantation in a Mediterranean mountain environment—The case of the Priorat region (NE Spain). Geomorphology, 86, 1–11.CrossRefGoogle Scholar
  46. Ramos, M. C., Cots-Folch, R., & Martínez-Casasnovas, J. A. (2007b). Effects of land terracing on soil properties in the Priorat region in Northeastern Spain: A multivariate analysis. Geoderma, 142, 251–261.CrossRefGoogle Scholar
  47. Ramos, M. C., Jones, G. V., & Martínez-Casasnovas, J. A. (2008). Structure and trenes in climate parameters affecting winegrape production in northeast Spain. Climate Research, 142, 1–15.CrossRefGoogle Scholar
  48. Rouse, J. W., Haas, R. H., Schell, J. A., & Deering, D. W. (1974). Monitoring vegetation systems in the Great Plains with ERTS. In S. C. Freden, E. P. Mercanti, & M. A. Becker (Eds.), Third earth resources technology satellite-1 symposium, volume I: Technical presentations NASA SP-351 (pp. 309–317). Washington, DC: NASA.Google Scholar
  49. Rühl, J., Pasta, S., & Schnittler, M. (2006). A chronosequence study of vegetation dynamics on abandoned vine and caper terraces of Pantelleria Island (Sicily). Archives of Nature Conservation and Landscape Research, 45, 71–90.Google Scholar
  50. Sánchez Hernández, A. (2007). La organización común del mercado del vino: Una propuesta entre el presente y el futuro. Cited 10 February 2008.
  51. Soil Survey Staff (1999). Soil survey staff, keys to soil taxonomy. Washington DC: Department of Agriculture Soil Conservation Service.Google Scholar
  52. Steevenson, L. J. (2004). Bussiness of the institute: A study of the revival of Priorat and its contemporary challenges. Journal of Wine Research, 15, 65–84.CrossRefGoogle Scholar
  53. Tanrivermis, H. (2003). Agricultural land use change and sustainable use of land resources in the Mediterranean region of Turkey. Journal of Arid Environments, 54, 553–564.CrossRefGoogle Scholar
  54. Torri, D., Borselli, L., Calzolari, C., Yañez, M., & Salvador-Sanchis, M. P. (2002). Soil erosion, land use, soil quality and soil functions: Effects of erosion. In J. L. Rubio, R. P. C. Morgan, S. Asins, & V. Andreu (Eds.), Man and soil at the third millennium (pp. 131–148). Logroño, Spain: Geoforma Ediciones—CIDE.Google Scholar
  55. Turkelboom, F., Ongprasert, S., & Taejajai, U. (1996). Soil fertility dynamics in steep land valley farming. In A. Sajjapongse (Ed.), Proceedings of the seventh annual meeting on the management of sloping lands for sustainable agriculture in Asia, DLD and IBSRAM. Chiang Mai, Thailand, 16–20 October 1995.Google Scholar
  56. Van Muysen, W., Govers, G., Bergkamp, G., Roxo, M., & Poesen, J. (1999). Measurement and modelling of the effects of initial soil conditions and slope gradient on soil translocation by tillage. Soil & Tillage Research, 51, 303–316.CrossRefGoogle Scholar
  57. Walker, W. R. (1989). Guidelines for designing and evaluating surface irrigation systems. FAO Irrigation and Drainage Paper 45. Rome: FAO.Google Scholar
  58. Wicherek, S. (1991). Viticulture and soil erosion in the north of Parisian basin. Example: The mid Aisne region. Zeitschrift fur Geomorphologie, Supplementband, 83, 115–126.Google Scholar
  59. Wicherek, S. (1993). The soil asset: Preservation of a natural resource. In S. Wicherek (Ed.), Farm land erosion: In temperature plains environment and hills (pp. 1–16). Amsterdam: Elsevier.Google Scholar
  60. Zarco-Tejada, P. J., Berjón, A., López-Lozano, R., Miller, J. R., Martín, P., Cachorro, V., et al. (2005). Assessing vineyard condition with hyperspectral indices: Leaf and canopy reflectance simulation in a row-structured discontinuous canopy. Remote Sensing of Environment, 99, 271–287.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • José A. Martínez-Casasnovas
    • 1
  • María Concepción Ramos
    • 1
  • Sílvia Espinal-Utgés
    • 1
  1. 1.Department of Environment and Soil ScienceUniversity of LleidaLleidaSpain

Personalised recommendations